ALOMAR Observatory: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified ALOMAR Observatory as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 9 of 9
1. Monitoring of long range transboundary air pollution, greenhouse gases, ozone layer and natural ultraviolet radiation

The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change. 

AMAP Arctic air Arctic haze Atmosphere Atmospheric chemistry monitoring Atmospheric processes Carbon dioxide chlorofluorocarbons (CFC) Climate heavy metals methane Montreal & Kyoto Protocols PAHs PCBs POPs total gaseous mercury total ozone UV
2. Estimation of temperatures in the upper mesosphere using meteor decay times observed on 32.55 MHz and 53.5 MHz

Objective 1: Proof of the possibility to estimate temperatures from meteor decay times using co-located, simultaneous meteor observations on two, well separated frequencies (32.55 MHz/SKiYMET radar and 53.5 MHz/ALWIN MST radar) without the assumption of a predetermined temperature gradient. The second method for determining temperature height profiles uses the direct measurement of the ambipolar diffusion coefficient in conjunction with pressure data to estimate temperatures. Pressure data from empirical models are often too unreliable, therefore pressure data derived from rocket-borne falling spheres measurements could be used for a reliable temperature determination. Objective 2: Proof of the method using co-located meteor radar measurements and falling sphere soundings conducted in 2002 at Andenes (69N) during the MaCWAVE campaign. It should be possible to estimate meteor temperature profiles in a height range between 82 km and about 94 km.

Radar Atmospheric processes Geophysics Arctic Atmosphere temperature
3. Simultaneous Measurements of Temperatures, Waves, and PSCs in the Polar Winter-Stratosphere on both Sides of the Scandinavian Mountains

Polar stratospheric clouds play a key-role in polar ozone destruction. Cold temperatures in the vortex allow formation of these clouds. Depending on the PSC-type different formation-temperatures have to be reached. Synoptic temperatures do not always fall to these formation-temperatures, but waves in the atmosphere can lead to additional cooling of several 10 K, which allows PSC-formation. Whereas the wave-activity at the ESRANGE is very high due to hilly surrounding area, the orographic wave-activity at ALOMAR is expected to be rather small. Waves with long wavelengths will be present at both stations simultaneously. Coordinated measurements of temperature and aerosols will show both the large-scale wave-part and also the locally induced wave-part. Such measurements should allow identification of the different wavelngth scales and in addition contribute to a better estimate of the importance of wave-induced clouds for PSC-formation.

PSC Atmospheric processes Ozone Climate variability Climate temperature profiles Atmosphere wave-activity
4. Stratosphere-mesosphere intercomparison of ozone profil

During the past years, atmospheric research in high latitudes has been focussed on processes causing ozone loss in the polar winter lower stratosphere1). Recent research efforts also dealt with regions up to the lower mesosphere, and studied the effects of charged particle precipitation on NO and ozone2)-5). However, the measurement techniques and hence the database for studying such processes in this altitude range are very limited. The Airborne SUbmillimeter Radiometer ASUR6),7) of the Institute of Environmental Physics of the University of Bremen has recently been equipped with a high-resolution spectrometer that will enable the retrieval of vertical profiles of ozone up to an altitude of about 65 - 70 km. Its measurement capabilities comprise also several other species of interest, especially NO. This makes the measurement technique particularly suitable for upper stratospheric/lower mesospheric studies. The lidar at ALOMAR is capable of measuring highly resolved vertical profiles of ozone up to an altitude of 60 km, thus giving the rare opportunity for intercomparison and validation studies in an altitude range reaching from the lower stratosphere to the lower mesosphere. Therefore we propose to perform simultaneous ozone measurements of the ASUR instrument with the ALOMAR lidar, supported by launches of ozone sondes.

Atmospheric processes Ozone Geophysics radiometer Climate Arctic Atmosphere lidar
5. Investigation of long periodic gravity waves and their possible sources in the vicinity of the Scandinavian mountain ridge

The upper troposphere and lower stratosphere are strongly affected by the appearance of gravity waves with different scales. Due to the exponential decrease of the density with the altitude, the upward propagation of these waves is associated with an increase in their amplitudes. Associated with the wave breaking and with deposit of momentum and energy in the background flow, the dynamical and thermal structure at upper stratospheric and mesospheric heights are essentially influenced. However, their sources and the quantitative aspects of these processes are poorly understood at present. Here we are focussing on the investigation of long periodic gravity waves with periods of several hours and horizontal wavelengths of more than hundred kilometres. In contrast to the pure internal gravity waves, these waves are called inertio-gravity waves due to their influence by the rotation of the Earth, described by the Coriolis effect or by the inertial frequency.

Atmospheric processes Geophysics ozon-profile Modelling Arctic temperature-profiles Atmosphere wind
6. Ground-based observations of noctilucent clouds With the shortest possible wavelength (308 nm)

Noctilucent clouds (NLC) remain a fascinating phenomenon of the upper atmosphere to study. The questions about the typical particle density and particle size distribution within a NLC are very prominent ones, to which a number of answers have been given, though some of the answers contradict each other. The parameters of particle size distributions can be derived from groundbased lidar measurements of the spectral dependence of the volume backscatter coefficient of an NLC. Such studies have been performed during a number of NLC events by e.g. the ALOMAR Rayleigh/Mie/Raman (RMR) lidar (von Cossart et al., GRL, 26, 1513, 1999). A drawback of these experiments is the wavelength limitation of the RMR lidar, the shortest wavelength of which is 355 nm. At this wavelength, the sensitivity of the lidar to particles with sizes smaller than, say, 25 nm is minimal. Because a considerable part of the entire particle population may have sizes below that threshold, a lingering question remains whether or not this drawback matters for typical NLC distributions. Using the ALOMAR ozone lidar, a measurement of the NLC volume backscatter coefficient at 308 nm becomes possible. Due to the l-4 -dependence of the backscatter coefficients, the latter are almost a factor of 2 larger at this wavelength than at 355 nm. For this reason and in order to gain a fourth wavelength to the spectral distribution, we aim at using the ozone lidar for the outlined project.

Atmospheric processes Climate NLC Arctic Atmosphere lidar
7. Simultaneous multi-instrumental measurements of temperatures, waves and PSCs in the polar winter atmosphere on both sides of the Scandinavian mountains

Waves play a major role for the momentum and energy transport in the middle atmosphere [Fritts and van Zandt, 1993] by modifying the local temperature field as well as the general circulation when the waves reach the saturation level and break [Holton, 1983; Fritts, 1984]. The MACWAVE rocket campaign is investigating the wave field in polar latitudes during summer and winter. To learn more about the horizontal structure of the wave field, it is important to measure at more than one station. For the monitoring of the vertical transport by the waves, measurements over a large height range are necessary. The combination of lidars, radiosondes and falling spheres will cover the region from the ground up to approximately 105 km. When comparing data, it is important to take into account the different measurement principles and integration times. The rocket will show small scale variations whereas the lidar permits a continuous monitoring of the temperature and wave situation

Atmospheric processes Ozone Geophysics Climate change Arctic Atmosphere
8. Study of the ozone response to the winter-spring time atmospheric dynamics at high latitude

These investigations confirm the fact that in the stratosphere the ozone is considerably influenced by dynamical processes and it is a good indicator of them. In this context the main objectives of the proposed study are: 1) to investigate the possible relationship between stratospheric ozone perturbations and the temperature enhancement in the upper mesosphere, observed by Shepherd et al. (2001); 2) to examine whether changes in ozone, concomitant with the phenomenon, take place and how and when they would be manifested; and 3) to investigate the stratospheric ozone behaviour during the equinox atmospheric transition in the North Hemisphere, for better understanding of the middle atmosphere dynamics.

Ozone Geophysics stratospheric warming Climate Arctic Atmosphere polar vortex
9. CHAracterisation of OClO Spectrometer for Antarctica: Evaluation measurements inside the Arctic Polar Vortex (CHAOS_A)

The purpose of the CHAOS_A project is to perform measurements under "Antarctic conditions" during the polar vortex period with the new assembled spectrometer in order to perform tasks that cannot be achieved at low latitudes namely OClO detection. Therefore the campaign focus more in technical aspects than scientific ones. The period of observation may be short to achieve results of scientific interest and those will depend on the meteorology of the stratosphere (position of the polar vortex relative to the station, temperatures at the lower stratosphere, etc). The OClO results will be compared with those obtained by the NILU (Andoya) and Heidelberg U.

PSC Atmospheric processes BrO UV radiation UV-Vis spectrometer NO2 Arctic Temperature profiles. Atmosphere OClO