Alaska: projects/activities

To edit or add records to any of the catalogs, log in or create an account.

Directory entires that have specified Alaska as one of the geographic regions for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. Note that the list of regions is not hierarchical, and there is no relation between regions (e.g. a record tagged with Nunavut may not be tagged with Canada). To see the full list of regions, see the regions list. To browse the catalog based on the originating country (leady party), see the list of countries.

It is also possible to browse and query the full list of projects.

Displaying: 1 - 20 of 54 Next
1. Alaska Surveillance, Epidemiology and End Results (SEER)

Within the State of Alaska, the Alaska Surveillance, Epidemiology and End Results (SEER) program collects and publishes cancer data as part of the National Cancer Institute’s overall SEER program, and the Alaska Native Stroke Registry is a project to increase the understanding of stroke in Alaska Natives, with the goal of improving stroke care. Circumpolar linkage of such networks would facilitate international collaboration, international standardization of data collection international comparison of comparable data, thereby greatly adding to our knowledge of Arctic health, and enhancing design of treatment and prevention.

Human health
2. Alaska Soil Survey

The USDA also manages the Alaska Soil Survey, a scientific inventory of soil resources in 31 different regions of the state. The data are used for making maps, identifying physical and chemical properties of soils, and supplying current information on potential uses and limitations of soils. The Soil Survey contributes to the Natural Resources Inven-tory that involves monitoring of the changes and trends in natural resource use and condition.

3. NASA Hydrology

NASA satellites (Figure 13) support an extensive Global Water Cycle science focus area and contribute to high accuracy, stable, sustained observations and associated modeling for terrestrial hydrology and cryosphere studies. Derived geophysical products for terrestrial hydrology and cryosphere are available from the NSIDC’s Distributed Active Archive Center (DAAC). They include: soil moisture and snow water equivalent from AMSR-E; Greenland ice sheet altimetry and global land surface altimetry from ICESat/GLAS; snow cover extent/area from MODIS; surface albedo and temperature from AVHRR Pathfinder. SAR data obtained from a variety of foreign satellites since 1991 are archived at the ASF DAAC. SAR data provide opportunities for change detection, including interferometric SAR (InSAR) studies of glacier and ice sheet surface elevation and dynamics (ice velocity maps), land surface elevation, and soil moisture. GRACE has been used to determine the mass loss from the Greenland ice sheet and from glaciers in southeast Alaska. The surface elevation of the Greenland ice sheet is mapped using ICESat, and the Advanced Spaceborne Thermal Emission and Reflec¬tion Radiometer (ASTER) is used to acquire imagery and topography of the ice sheet.

4. DOD Permafrost observing activities

DOD observing activities related to Arctic terrestrial hydrology and cryosphere focus mainly on perma¬frost at two facilities maintained by CRREL: the Permafrost Tunnel at Fox, Alaska, and the Permafrost Research Station at Fairbanks, Alaska. The permafrost tunnel is primarily a research facility, where ground temperatures have been monitored continuously since 1963. At the Permafrost Research Station, ground and air temperatures have been monitored intermittently since 1947; continuous measure¬ments resumed in 2006 and a Circumpolar Active Layer Monitoring (CALM) site was added in 2004. CRREL also monitors shallow ground temperatures at research sites at Shishmaref and Fort Wainwright, Alaska.

5. EPA National Aquatic Resource Survey (NARS)

The EPA National Aquatic Resource Survey (NARS) assesses the condition of the Nation’s aquatic resources, including those in Alaska. NARS is an integrated and comprehensive program that monitors five different categories of aquatic resources: coasts, streams, rivers, lakes, and wetlands. Each of the five aquatic resource categories sample specific indicators to provide information on the physical, chemical and biological condition of the resource. Examples include: coasts (water chemistry, sediment quality, benthic condition, fish tissue contaminants, habitat condition); streams (benthic condition, nutrients, sedimentation, fish habitat, riparian vegetation); rivers (fish, benthos, periphyton, nutrients, sedi-mentation, recreational indicators); lakes, including ponds and reservoirs (zooplankton, phytoplankton, sediment diatoms, sediment mercury, nutrients, microcystin, enterococcus, fish tissue chemistry); wetlands (to be determined). Sampling was conducted for the National Coastal Assessment in south central Alaska in 2002, in southeast Alaska in 2004, and the Aleutians in 2006-2007. Pilot surveys were conducted for the National Wadeable Streams Survey in the Tanana basin in 2004-2005, and for the National Wadeable Lakes Survey in the Kenai region in 2007-2008.

6. NOAA + NASA remote sensing of climate variables (NOAA + NASA remote sensing)

Both NOAA and NASA operate satellites with cover¬age of the Arctic region. The major observations and products are: 1. Daily, near real-time plots of surface, cloud, and radiative properties from AVHRR; 2. Near real-time MODIS and AVHRR polar winds; 3. Daily, near real-time plots of clear sky, low-level temperature inversions from MODIS; 4. Daily profile plots of Arctic temperature, humid-ity and winds; 5. Near-daily plots of surface winds over open water; and 6. Surface temperatures for land, sea and sea ice.

Climate Sea ice Atmosphere
7. NPS Aerosols

NPS monitors aerosols at Denali National Park and Preserve (DNPP) to calculate and track visibility trends (1988 to present). The aerosol program is part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Wet deposi¬tion has been monitored at DNPP (Site ID AK03) since 1980 as part of the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). In order to estimate dry deposition at DNPP (Site DEN417), weekly concentrations of sulfur and nitrogen compounds have been measured since 1998 as part of the Clean Air Status and Trends Networks (CASTNet). UV-B radiation has been monitored at DNPP since 1997 as part of the EPA UV-B Monitoring Program. The NPS Western Air¬borne Contaminants Assessment Project (WACAP) is currently evaluating water, snow, sediments, willow bark, fish, and moose tissue in a number of western US and Alaska national parks, including DNPP, for the presence of metals (including mercury) and organic compounds.

Pollution sources
8. NSSI Climate Change/Vegetation Change and Fire Regime in Tundra Ecosystems

In tundra areas of Alaska, we need to be able to ascertain that enough old-growth lichen-rich habitats remain for our caribou herds and that habitat diversity is maintained. Examination of long-term range monitoring transects previously deployed in remote tundra areas of Alaska on BLM lands show significant declines in available caribou forage lichens (which are highly sensitive to disturbance and slow-growing) for caribou and reindeer. Post-fire recovery of lichens may be prolonged or questionable under current climate conditions. The principal objective is to determine the magnitude of climate change impacts to tundra and boreal forest fire regime.

9. NSSI Stream Gaging Stations – Arctic National Wildlife Refuge

One station on the Tamayariak River measures tundra water flow. Another station on the Canning River measures flow from mountain discharge. Member of US Geological Survey National Water Information System. Tamayariak River, North Slope Borough, Alaska Hydrologic Unit Code 19060501 Latitude 69°51'55", Longitude 145°35'34" NAD27 Drainage area 149 square miles Gage datum 325 feet above sea level NGVD29 Location: Canning River, North Slope Borough, Alaska Hydrologic Unit Code 19060501 Latitude 69°52'55", Longitude 146°23'09" NAD27 Drainage area 1,930 square miles Gage datum 338 feet above sea level NGVD29

10. NASA Arctic activities

More information will be available in due course

11. NWS Arctic activities

More information about NWS observing activities will be available in due course Alaska Region Headquarters, Weather station list and real-time observations, Marine observations, Hydrology – Alaska Pacific River Forecast Center,

Climate Atmosphere
12. National Current Observation Program (NCOP)

The NCOP collects, analyzes, and disseminates observations and predictions of tidal currents for over 2,700 locations throughout the United States. The NCOP conducts annual tidal current surveys in various locations which deploy current meters for 30-90 days to acquire enough data to generate accurate tidal current predictions. Main gaps: NOAA maintains tidal current predictions at approximately 2,750 locations. However, there are little historical data north of the Aleutian chain, and those data are very old.  

Oceanography Human health Ecosystems
13. National Water Level Observation Network (NWLON) (NWLON)

The NWLON is a network of long term stations whose fundamental purpose is to provide vertical control (tidal datums) that support a host of national requirements. In addition, the NWLON collects continuous water level data and provides observations and derived data products that support: marine transportation and navigation ( hydrographic charting surveys, shoreline mapping surveys, tide predictions, forecast water levels, real time observations, dredging projects, hazardous material spill response); global sea level rise studies, storm surge and tsunami detection and warnings, marine boundary determination (federal/state, state/private, state/state), coastal zone management activities, ecosystem restoration, and effective marine spatial planning. Main gaps: Gap analysis report completed in FY2008 identifying gaps based primarily on providing vertical (tidal datum) control. Largest gaps in Arctic region – gaps in data and information in Bristol Bay, Bering Sea, Bering Strait, Chukchi Sea, and Beaufort Sea areas.

Oceanography Human health Ecosystems
14. NOAA Arctic Atmospheric Observatories

More information about the following long-term observing activities will be available in due course

Climate Atmosphere
15. Alaska Ocean Observing System (AOOS)

To develop a coastal and ocean observing system in the Alaska region that meets the needs of multiple stakeholders by (1) serving as a regional data center providing data integration and coordination; (2) identifying stakeholder and user priorities for ocean and coastal information; (4) working with federal, state and academic partners to fill those gaps, including by AOOS where appropriate. Main gaps: AOOS and the data center are statewide activities, but thus far, available funding has limited observations and models primarily the Gulf of Alaska.

Climate Oceanography Atmosphere Human health Ecosystems
16. Automated Surface Observing System - Alaska (ASOS)

More information about the following aviation meteorology observing activities will be available in due course

Climate Atmosphere
17. USGS Benchmark Glaciers

USGS operates a long-term “benchmark” glacier program to monitor climate, glacier geometry, glacier mass balance, glacier motion and stream runoff.

18. Real-time Permafrost and Climate Monitoring Network – Arctic Alaska

More information about the following long-term observing activities will be available in due course

19. USGS Contributions to the Climate Change Science Program – Permafrost Monitoring

More information about the following long-term observing activities will be available in due course

20. National Streamflow Information Program (NSIP) (NSIP)

The mission of the NSIP is to provide the streamflow information and understanding required to meet local, State, regional and national needs. For additional information about USGS water resources programs and data, go to: • Program Description: • Contact: Steven Frenzel, • Surface water data availability: • Water quality data availability: • Groundwater data availability: Main gaps: Extremely sparse coverage in Alaska in general.