The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 100 of 194 Next
81. NOAA + NASA remote sensing of climate variables (NOAA + NASA remote sensing)

Both NOAA and NASA operate satellites with cover¬age of the Arctic region. The major observations and products are: 1. Daily, near real-time plots of surface, cloud, and radiative properties from AVHRR; 2. Near real-time MODIS and AVHRR polar winds; 3. Daily, near real-time plots of clear sky, low-level temperature inversions from MODIS; 4. Daily profile plots of Arctic temperature, humid-ity and winds; 5. Near-daily plots of surface winds over open water; and 6. Surface temperatures for land, sea and sea ice.

Climate Sea ice Atmosphere
82. NPS Aerosols

NPS monitors aerosols at Denali National Park and Preserve (DNPP) to calculate and track visibility trends (1988 to present). The aerosol program is part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Wet deposi¬tion has been monitored at DNPP (Site ID AK03) since 1980 as part of the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). In order to estimate dry deposition at DNPP (Site DEN417), weekly concentrations of sulfur and nitrogen compounds have been measured since 1998 as part of the Clean Air Status and Trends Networks (CASTNet). UV-B radiation has been monitored at DNPP since 1997 as part of the EPA UV-B Monitoring Program. The NPS Western Air¬borne Contaminants Assessment Project (WACAP) is currently evaluating water, snow, sediments, willow bark, fish, and moose tissue in a number of western US and Alaska national parks, including DNPP, for the presence of metals (including mercury) and organic compounds.

Pollution sources
83. Greenland Climate Network (GC-Net)

NASA and NSF support the Greenland Climate Network (GC-Net), a series of automatic weather stations that monitor conditions on the ice sheet.

84. Arctic Observing Network (AON)

The overall goal of AON is to obtain data that will support scientific investigations of Arctic environmental system change. The observing objectives are to: 1. Maintain science-driven observations of environmental system changes that are already underway; 2. Deploy new, science-driven observing systems and be prepared for detection of future environmental system change; 3. Develop observing data sets that will contribute to (a) the understanding of Arctic environmental system change (via analysis, synthesis and modelling) and its connections to the global system, and (b) improved prediction of future Arctic environmental system change and its connections to the global system. Main gaps: Understanding Change and Responding to Change panels, has formed an AON Design and Implementation (ADI) Task Force. Composed of Arctic and non-Arctic scientists with experience and expertise in scientific observing and observing system operation and design, the goal of the task force is to provide advice to the scientific community and NSF on observing system/network design options that are available for identifying gaps that hinder scientific understanding of Arctic environmental system change. The task force will hold two workshops and address two main objectives: (1) evaluate the current SEARCH science questions and observing priorities, and recommend new priorities in the light of the environmental system changes that have occurred since 2005; and (2) evaluate observing system/network design methods, including pilot projects and small-scale tests. A publicly available report will be released in summer 2010. It is anticipated that the report will be of interest to the broader Arctic science community, the governments of the Arctic countries and other countries, NGOs and numerous stakeholders.

Environmental management Oceanography Atmosphere Human health Ecosystems
85. NWS Arctic activities

More information about NWS observing activities will be available in due course Alaska Region Headquarters, Weather station list and real-time observations, Marine observations, Hydrology – Alaska Pacific River Forecast Center,

Climate Atmosphere
86. Russian-American Long-term Census of the Arctic (RUSALCA) (RUSALCA)

Observe changes in the ecosystem, fluxes of heat, salt, nutrients, CO2, and methane from the seafloor to the atmosphere above, as a function of changing climate in the Pacific Arctic region from the Bering Strait north to the high Arctic. Main gaps: So far unable to go far into the ice for investigation, although the geographical scope of the RUSALCA mission increased in 2009 because of the reduction of sea ice cover. (we were able to reach a northernmost site and to sample as far north as 77°30’N.

Oceanography Atmosphere Ecosystems
87. National Data Buoy Center (NDBC) (NDBC)

To provide real-time marine meteorological, oceanographic and geophysical observations in real-time to the World Meteorological Organization’s Global Telecommunications Service (GTS).

Oceanography Atmosphere Ecosystems
88. Ecosystems and Fisheries-Oceanography Coordinated Investigations (EcoFOCI) (EcoFOCI)

The Bering Sea is an extremely rich ecosystem providing almost half of the US catch of fish and shellfish. EcoFOCI has four moorings (M2, M4, M5 and M8), which are an important component in the observational system, monitoring changes in the ecosystem. Data are used by ecosystem managers, modellers (model validation), and scientists. They provide critical information on the spatial temperature structure, timing of phytoplankton blooms, cold pool and presence of marine mammals. Main gaps: Expanding instrumentation to measure ice thickness, nutrients, oxygen, PAR, zooplankton biovolume and atmospheric variables to all four of the mooring sites. Increase vertical resolution of nutrients. Expand measurements northward into the Chukchi and Beaufort Seas.

Oceanography Atmosphere Human health Ecosystems
89. NOAA Arctic Atmospheric Observatories

More information about the following long-term observing activities will be available in due course

Climate Atmosphere
90. Atmospheric Baseline Observatories – Barrow, Alaska

More information about the following long-term observing activities will be available in due course

Climate Atmosphere
91. Alaska Ocean Observing System (AOOS)

To develop a coastal and ocean observing system in the Alaska region that meets the needs of multiple stakeholders by (1) serving as a regional data center providing data integration and coordination; (2) identifying stakeholder and user priorities for ocean and coastal information; (4) working with federal, state and academic partners to fill those gaps, including by AOOS where appropriate. Main gaps: AOOS and the data center are statewide activities, but thus far, available funding has limited observations and models primarily the Gulf of Alaska.

Climate Oceanography Atmosphere Human health Ecosystems
92. Automated Surface Observing System - Alaska (ASOS)

More information about the following aviation meteorology observing activities will be available in due course

Climate Atmosphere
93. Beaufort and Chukchi Seas Mesoscale Meteorology Model

1. Produce a geospatial surface meteorological database for the Beaufort and Chukchi Seas and the adjacent coastal areas by collecting available conventional and unconventional surface and atmospheric data and conducting field work; 2. Establish a well-tuned Beaufort/Chukchi seas mesoscale meteorology model through further modeling studies for the optimization and improvement of the model physics and configuration; 3. Conduct a long-term hindcast simulation with the optimized data-modeling system and produce a high resolution meteorological dataset for the Beaufort and Chukchi regions; and 4. Document the high-resolution climatological features of the Beaufort/Chukchi seas’ surface winds, including an analysis of the interannual variability and long-term

94. NPS Inventory and Monitoring Program, Alaska Region

To determine status and trend in the condition of selected natural resources in national park units in Alaska. There are four networks, each encompassing activities in a set of national parks, preserves and other park lands: • Arctic Network (ARCN): Gates of the Arctic, Noatak, Kobuk Valley, Cape Krusenstern, Bering Land Bridge. • Central Alaska Network (CAKN): Yukon-Charley Rivers, Denali, Wrangell-St. Elias. • Southwest Alaska Network (SWAN): Kenai Fjords, Lake Clark, Katmai, Alagnak Wild River, Aniakchak. • Southeast Alaska Network (SEAN): Glacier Bay, Klondike Gold Rush, Sitka. Main gaps: Not all data are currently available but we are working toward that goal. Funding limitations do not allow monitoring at detailed levels.

Atmosphere Ecosystems
95. Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) (ACRF)

The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a multi-platform national scientific user facility, with instruments at fixed and varying locations around the globe for obtaining continuous field measurements of climate data. Each ACRF site uses a leading edge array of cloud- and aerosol-observing instruments to record long-term continuous atmospheric and surface properties that affect cloud formation and radiation transport through the atmosphere. The ARCF also provides shorter-term (months rather than years) measurements with its two mobile facilities (AMFs) and its aerial measurements. Network type: - Atmosphere, with a focus on the impact of clouds and aerosol on the Earth’s radiation budget. - Location: Primary site: Barrow, Alaska, 71° 19' 23.73" N, 156° 36' 56.70" W Secondary site: Atqasuk, Alaska, 70° 28' 19.11" N, 157° 24' 28.99" W - Community-based: No.

Climate Atmosphere
96. Denmark Satellite observations as base for atmosphere related ECV observations

Upper-air temperature Homogenized upper-air temperature analyses: extended MSU-equivalent temperature record, new record for upper-troposphere and lower-stratosphere temperature using data from radio occultation, temperature analyses obtained from reanalyses. Water vapour Total column water vapour over the ocean and over land, tropospheric and lower stratospheric profiles of water vapour. Ozone Profiles and total column of ozone.

Climate Sea ice Oceanography Atmosphere
97. Denmark Automated Shipboard Aerological Programme (ASAP)

The ASAP in its present form began in the mid1980s. The programme objective is to record profile data from the upper air strata in ocean areas using automated sounding systems carried on board merchant ships plying regular ocean routes. Several national meteorological services operate ASAP units and the collected data are made available in real time via GTS. ASAP data are archived alongside other radio sounding data by many national meteorological services. ASAP is an important contribution to both the WWW and GCOS. Today most of the soundings are from the North Atlantic and north-west Pacific, but the programme is expanding to other ocean basins through a new, co-operative World-wide Recurring ASAP Project (WRAP). Denmark operates two ASAP units mounted on ships plying fixed routes from Denmark to Greenland. The European meteorological cooperation EUMETNET started a special E-ASAP programme in December 2000. The programme aims at joint operation of the ASAP programmes under the European meteorological institutes.

Climate Oceanography
98. Denmark upper air strata measurements radio sounding observations

DMI runs radio sounding stations at the following six locations: Tórshavn (the Faroe Islands), Danmarkshavn, Illoqqortoormiit, Tasiilaq, Narsarsuaq and Aasiaat (Greenland). Two soundings are made every day at these stations. A monthly summary (CLIMAT TEMP) from all stations is prepared and transmitted routinely on the GTS.

Climate Atmosphere
99. Greenland Solar ultraviolet (UV) radiation and stratospheric ozone stations

Solar Ultraviolet (UV) radiation at different wavelengths is measured by DMI at two stations in Greenland, namely Pittuffik and Kangerlussuaq. In addition, DMI performs weekly ozone soundings at Illoqqortoormiut as well as sporadic ozone soundings at Pituffik during the winter months.

Climate Atmosphere
100. Denmark Climatological/meteorological surface stations

DMI operates and receives data from a network of approximately 100 automatic meteorological stations in Denmark, Greenland and on the Faroe Islands. Measurements are made in accordance with the WMO recommendations. As of 2001 a special dedicated network of (manual) stations for climatological observations has been discontinued, due to the convergence between the different network technologies. The objectives behind this decision are to eliminate human errors, to benefit from potential savings due to this rationalisation, and to reach a higher observation frequency. Climatological data are now obtained from the automatic network described above. Climatological data are collected to define the climate in Denmark, Greenland and on the Faroe Islands and to create a national database for a wide range of enquiries and research activities. Climatological work mostly consists of preparing annual and monthly statistics, including calculation of averages, percentiles and standard deviations. Substantial recorded data are needed to establish reliable averages and trends. In 2008 the daily inflow of data from Denmark, Greenland and the Faroe Islands was 100,000 observations, and the central database at DMI currently contains more than 300,000,000 observations. Some of the recorded data are from as early as 1872. A monthly summary is prepared for the three stations in Denmark, one on the Faroe Islands and eight in Greenland using the CLIMAT format. These data are routinely submitted via the GTS. Radiation is measured as 10- minute mean values of global radiation at the DMI operated weather station.

Climate Atmosphere