The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 98 of 98
81. Late Quaternary paleoceanography of the Denmark Strait Overflow Pathway

The global thermohaline circulation is driven by sinking of cold, dense surface waters in the Greenland and Norwegian Seas and its replacement by warmer surface water from lower latitudes. This global circulation system, the conveyor belt, is the main regulator of global climate. Even slight disturbances of this delicate system will cause significant climate changes, especially for NW Europe. While the current hydrographical situation and associated overflow pathways are well-documented, paleoceanographic studies of the Greenland and Faroe/Shetland (F/S) overflow pathways are still scarce. The F/S pathway is presently the subject of study of the MAST program (ENAM project). This project focusses on the late Quaternary overflow history of the important East Greenland pathway. High resolution multichannel sleevegun seismic data recently collected by the Geological Survey of Greenland and Denmark (GEUS) allowed identification of suitable box- and piston-coring sites. Results from the high-resolution cores, allowing direct correlation with regional atmospheric changes documented in the Greenland ice-cores will provide new information on causes and mechanisms of climate change. The continental slope and rise off SE-Greenland can be considered as a potential key area for paleoceanographic and paleoclimatic studies, since: 1) The area is located in the immediate vicinity of the Denmark Strait arctic gateway for water mass exchange between the Arctic and Atlantic ocean. Recent hydrographic measurements (Dickson 1994) demonstrate the important role of the area with regard to hydrographic processes contributing to the formation of NADW. 2) The seafloor morphology and information from multichannel seismic recording shows the presence of numerous large detached sediment drifts and other drift-related features, which will provide important paleoceanographic information as outlined before. 3) The distribution and architecture of the sediment drifts is also affected by down-slope processes transporting upperslope/shelf sediments of mainly glacial origin. Thus the area offers an unique opportunity to study the sediment drifts both with regard to the (paleo)oceanic flow regime and the climatically-inherited signal from the down-slope sediment input. Research activities: All research is directed towards documentation of high resolution natural climate variability during the late Quaternary. Separate topics include: 1. Seismic/sidescan sonar studies 2. High resolution quantitative micropaleontology (planktonic/benthic foraminifera, diatoms, calcareous nannoplankton, dinoflagellates) 3. High resolution stable oxygen/carbon isotope studies 4. DNA studies on planktonic foraminifera (with University of Edinburgh)

Climate variability Climate Climate change Oceanography Ice cores micropaleontology Ocean currents paleoceanography
82. Expedition of hydrographical vessel 'Nikolai Kolomeets'

The expedition by vessel 'Nikolai Kolomeets'included sampling of marine water, bottom sediments, benthos and plankton for studies of accumulation and transformation of OCs and estimation of related toxic effects on aqueous biocenoses. The marine studies took place during the period July-October 2000 in areas of the Pechora, Kara, Laptev, East-Siberian and Chukchi Seas.

Shelf seas Organochlorines PCBs plankton Long-range transport Contaminant transport marine benthos Oceanography Persistent organic pollutants (POPs) bioaccumulation Sediments
83. 'Arctic-2000' expedition

The expedition 'Arctic-2000' included climatic, hydrometeorological and hydrochemical studies in the eastern part of the Central Arctic Basin, during the period July-August 2000.

Contaminant transport Heavy metals Hydrography Ice Long-range transport Oceanography Organochlorines PAHs PCBs Persistent organic pollutants (POPs) Petroleum hydrocarbons Sea ice
84. Zooplankton monitoring in the Norwegian Sea

Monitor the abundances of zooplankton at two transects along the coast 4-8 times a year, and in the Norwegian Sea in May and July-August

Climate variability Oceanography zooplankton
85. Simulation Scenarios for Potential Radioactive Spreading in the 21st century from Rivers and External sources in the Russian Arctic Coastal Zone (RADARC)

1) To perform simulation scenarios for the 21st century, including global warming scenarios, of potential radioactive spreading from sources in the Russian Arctic coastal zone and its impact on Barents, Greenland and Norwegian Seas and the Arctic Ocean; 2) To update the environmental and pollution data base of the Arctic Monitoring and Assessment Program (AMAP); 3) To assess, select and define the most probable simulation scenarios for accidental releases of radionuclides; 4) To implement a Generic Model System (GMS) consisting of several nested models designed to simulate radionuclides transport through rivers, in the Kara sea and in the Arctic ocean / North Atlantic; 5) To carry out simulation studies for the selected "release" scenarios of radionuclides, using various atmospheric forcing scenarios; 6) Assess the impact on potential radioactive spreading from sources as input to risk management.

Shelf seas Pathways Sources Hydrography Catchment studies Radioactivity Long-range transport Pollution sources Sea ice Contaminant transport Radionuclides Modelling Ice Oceanography River ice Arctic Local pollution GIS Sediments
86. Study of influence of land-based sources of radionuclides on radioactive contamination of Kara sea through Ob- and Yenisey river systems

To assess potential levels of radionuclides input into the Kara sea from existing and potential sources of technogenic radioactivity, located on the land in the Ob- and Yenisey rivers watersheds. Specific Objectives * To reveal and estimate a) most hazardous technogenic sources of radioactive contamination in the Ob- and Yenisey watersheds and b) the most possible and dangerous natural and technogenic (antrophogenic) situations (in the regions of these sources) that may result in release of radionuclides into the environment and may lead to significant changes in the radioactive contamination of the Kara sea * To estimate parameters of radionuclides (potential amount, composition, types etc.) under release to the environment from chosen sources as a result of accidents as well as during migration from the sources to the Kara sea through river systems * To set up a dedicated Database and a Geographic Information System (GIS) for modelling transport of radionuclides from the land-based sources to the Kara sea * To develop and create a dedicated model tool for simulation of radionuclides transport from land-based sources through Ob- and Yenisey river systems to the Kara sea

Pathways Hydrography Catchment studies Radioactivity Long-range transport Pollution sources Sea ice Contaminant transport Radionuclides Modelling Ice Oceanography River ice Arctic Local pollution GIS Data management Ocean currents
87. Monitoring climate variability in the Barents Sea

This is an ongoing activity for monitoring variability in temperature and salinity in Barents Sea

Climate variability Climate change Oceanography
88. Monitoring the Atlantic Inflow toward the Arctic (MAIA)

The overall objective of MAIA is to develop an inexpensive, reliable system based on coastal sea-level data for monitoring the inflows of Atlantic Water to the northern seas. Available observation systems, including stan-dard tidal stations, will be used to obtain transport estimates with a time resolution of less than a week and show that the method is generic and can be applied to a similar monitoring of other regions.

Long-range transport Climate Sea ice Ice Oceanography Arctic Ocean currents
89. Environmental Assessment in van Mijenfjorden, Svalbard

The project aims to describe the environmental status of marine sediments in van Mijenfjorden. This to provide baseline data of contaminants and biodiversity, as well as for monitoring of eventual contamination from industrial activities (coal mining).

Biological effects Glaciers Biology Populations Discharges Spatial trends Environmental management Mining Oceanography Biodiversity Arctic Sediments Temporal trends Ecosystems
90. Polar Exchange at the Sea Surface (POLES)

Our broad area of enquiry is the role of polar regions in the global energy and water cycles, and the atmospheric, oceanic and sea ice processes that determine that role. The primary importance of our investigation is to show how these polar processes relate to global climate.

Atmospheric processes polar cloud dynamics ice dynamics surface radiation and cloud forcing Climate variability Climate Sea ice Climate change surface heat and mass balance polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents cryosphere ice thickness
91. The Role of Polar Oceans in Contemporary Climate Change

Our central geophysical objective is to determine how sea ice and the polar oceans respond to and influence the large-scale circulation of the atmosphere. Our primary technical objective is to determine how best to incorporate satellite measurements in an ice/ocean model.

Atmospheric processes ice dynamics mass balance of Arctic sea ice Geophysics Climate variability Climate Sea ice Climate change freshwater balance of the Arctic Ocean polar atmospheric processes ice-ocean models arctic climate Modelling Ice Oceanography Arctic SEARCH Atmosphere Ocean currents ice thickness
92. Recent Hydrographic Variability of the Upper Arctic Ocean Derived from Submarine Based Samples

To observe the temperature/salinity structure of the Arctic Ocean along cross-Arctic transects aboard U.S. nuclear submarines in the SCICEX program.

Oceanography SEARCH
93. Developing Long Range Autonomous Underwater Vehicles for Monitoring Arctic Ocean Hydrography

To develop a long-range (ca. 30-day) AUV to deploy under the Arctic pack ice to measure and monitor ocean variables.

Hydrography Oceanography Arctic SEARCH
94. Shelf Basin Interactions Program

To understand and model the processes by which Arctic deep water is formed on continental shelves by the modification of inflowing Atlantic and Pacific waters.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents
95. Polar Ice Prediction System Version 3.0 (PIPS 3)

To develop the next-generation Navy operational ice thickness and movement model.

Shelf seas Hydrography Modelling Ice Oceanography Arctic SEARCH Data management Atmosphere Ocean currents
96. Bering Strait -- A Vital and Variable Forcing of the Western Arctic Shelves, Slopes and Basings

Maintain oceanographic moorings in the Bering Strait to monitor heat and mass flux into the Arctic Ocean; moorings will be augmented by nutrient samplers in 2001.

Currents Transport Salt Bering Strait Oceanography SEARCH
97. The Seasonal Cycle of Organochlorine Concentrations in the Canadian Basin

In September 1997, the CCGS Des Groseillers was frozen into the permanent ice-pack and started a year-long science program drifting across the southern Canada Basin. This program provided a unique opportunity to carry out a "vertical" food-chain study in a seasonal context to learn how the physical and biological systems couple to produce contaminant entry into the food web (Figure 1). "Vertical" components included the water and ice, particles, algae, zooplankton (sorted by trophic level), fish and seal.. The interpretation of contaminant data collected during SHEBA will provide information about the relationship between seasonal ice formation and melt, seasonal atmospheric transport and water column organochlorine concentrations in the Canada Basin. In addition our contaminant sampling program was integrated within a larger science plan where other SHEBA researchers studied the physical and biological properties of the water column. This means that contaminant distributions can be interpreted and modeled within the full context of physical, chemical and biological processes, and of atmospheric and oceanic transport mechanisms.

Pathways Organochlorines PCBs Long-range transport Spatial trends Sea ice Contaminant transport Climate change Oceanography Persistent organic pollutants (POPs) Geochemistry Food webs Temporal trends
98. The high latitude oceans in the climate system, with special emphasis on their role in the global carbon cycle

The scientific objectives of this project is to add information that helps elucidate the role of the Arctic Mediterranean Seas (Arctic Ocean and Nordic Seas) in the climatic system of the Northern Europe. More specifically it has the following aims: - To assess the heat and carbon dioxide fluxes over the air-sea interface in the Barents Sea and elucidate the effect this has on the formation of Arctic Ocean intermediate waters and associated carbon fluxes. - To assess the temporal variability of the fresh water distribution in the Arctic Ocean, both river runoff and sea ice melt, and the affect this has on the outflow of fresh water to the regions of open ocean deep water formation (the Greenland, Iceland and Labrador Seas). - To assess the mixing of upper and intermediate waters along the East Greenland Current that gives the properties of the overflow into the North Atlantic Ocean and thus add to the driving of the thermohaline circulation. This also contributes to the sequestering of anthropogenic carbon dioxide.

Shelf seas Hydrography Climate change Oceanography Arctic Geochemistry