Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 86 of 86
81. An investigation of factors affecting high mercury concentrations in predatory fish in the Mackenzie River Basin.

1. Continue to investigate spatial and temporal patterns in mercury concentrations in fish in lakes in the Mackenzie River Basin with a focus on predatory fish in smaller lakes near Fort Simpson but also including Great Bear Lake 2. Assess temporal trends in mercury concentrations and influencing factors, e.g., climate change 3. Conduct sediment core studies as opportunities allow to characterize long-term trends in mercury deposition and productivity 4. Integrate the findings of this study with our mercury trend monitoring in Great Slave Lake and the western provinces.

Pathways Sources Biology Organochlorines Mackenzie River Basin Soils Catchment studies Mercury Heavy metals Fish Indigenous people Pollution sources Environmental management Contaminant transport Food webs Sediments Atmosphere Human health Ecosystems
82. The Seasonal Cycle of Organochlorine Concentrations in the Canadian Basin

In September 1997, the CCGS Des Groseillers was frozen into the permanent ice-pack and started a year-long science program drifting across the southern Canada Basin. This program provided a unique opportunity to carry out a "vertical" food-chain study in a seasonal context to learn how the physical and biological systems couple to produce contaminant entry into the food web (Figure 1). "Vertical" components included the water and ice, particles, algae, zooplankton (sorted by trophic level), fish and seal.. The interpretation of contaminant data collected during SHEBA will provide information about the relationship between seasonal ice formation and melt, seasonal atmospheric transport and water column organochlorine concentrations in the Canada Basin. In addition our contaminant sampling program was integrated within a larger science plan where other SHEBA researchers studied the physical and biological properties of the water column. This means that contaminant distributions can be interpreted and modeled within the full context of physical, chemical and biological processes, and of atmospheric and oceanic transport mechanisms.

Pathways Organochlorines PCBs Long-range transport Spatial trends Sea ice Contaminant transport Climate change Oceanography Persistent organic pollutants (POPs) Geochemistry Food webs Temporal trends
83. Northern Contaminants Air Monitoring: Organochlorine Measurements

The objectives of this project are: A) to determine whether atmospheric concentrations and deposition of priority pollutants in the Arctic are changing in response to various national and international initiatives by: i) continuing to measure the occurrence of selected organochlorines in the arctic atmosphere at Alert, NWT for a period of three more years (measurements started in 1992), in parallel with identical measurements in western Russia at Amderma; ii) sampling at the Kinngait (Cape Dorset) station in 2000/2001 for the purpose of detecting change in the eastern Canadian Arctic by comparison with observations made four years earlier (1994-1996) at this site; and iii) analyzing and reporting data from Alert, Tagish, Kinngait and Dunai Island thereby providing insight into pollutant trends and sources. B) Ensuring the effective utilization of information at the international negotiating table in order to achieve the appropriate restrictions on release of pollutants of concern for the arctic environment by: i) contributing to the next assessment arising from the second phase of the Northern Contaminants Program (Canada) and specifically, the revised Assessments on POPs and Heavy Metals as part of the Arctic Monitoring and Assessment (AMAP) Program Work Plan; and ii) advising Canadian negotiators in preparing reasonable, practical strategies of control.

Organochlorines PCBs PAHs Long-range transport Contaminant transport Arctic Persistent organic pollutants (POPs) Data management Pesticides Atmosphere
84. Fluxes of Mercury from the Arctic Ice Surface during Polar Sunrise Conditions and Melt Conditions

The objectives of this project are: A) to determine the pathway for the transfer of mercury in snowmelt to sea water during the melt period at Alert; B) to determine the extent of open water and wet ice in the summer Arctic as it affects the surface exchange of Hg using satellite radar imagery; and C) to determine the atmospheric dynamics associated with the photochemistry of mercury episodically during the polar sunrise period.

trace metals satellite radar imagery radar Atmospheric processes melt open water acoustic sounding mercury Mapping Heavy metals Long-range transport Spatial trends Contaminant transport Hg Modelling Ice Arctic GIS radar imagery wet ice Atmosphere atmospheric boundary layer boundary layer
85. Global Gridded gamma-HCH and Endosulfan Emission Inventories

The aim of this project is to compile information and create a computerized database of historical and present global lindane and endosulfan usage data as well as emission data for gamma-hexachlorocyclohexane (gamma-HCH) and endosulfan with 1 degree x 1 degree lat/long resolution. The objectives of this project are: A) to create global gridded g-HCH and endosulfan emission inventories; B) to study the linkage between global g-HCH and endosulfan use trends and g-HCH and endosulfan concentration trends in the Arctic; and C) to assist in comparing concentrations and ratios of different HCH isomers in the Arctic biotic and abiotic environments.

Sources emission inventory b-HCH alpha-HCH Pollution sources Contaminant transport Modelling GIS a-HCH hexachlorocyclohexane Pesticides endosulfan beta-HCH Organochlorines Mapping lindane ß-HCH Long-range transport Discharges Spatial trends gamma-HCH gridded Emissions HCH Arctic Persistent organic pollutants (POPs) g-HCH Data management Atmosphere Temporal trends
86. Halocarbons in the atmosphere

The objectives are: 1. to monitor in near-real time the levels of a whole suite of halocarbons (both biogenic and anthropogenic) ranging through CFCs, HCFCs, and HFCs using an adsorption/desorption system coupled to a GC/MS system not using liquid cryogens. 2.The system will be installed (April 2000) at the Ny-Alesund, Zeppelin Research Station and will be operated and owned by NILU (Dr. N.SChmidbauer). 3. Comparisons will be made with the data obtained (since Oct. 1994) on similar compounds from the Mace Head (Ireland) station which uses similar instrumentation, and the Jungfraujoch Station (Jan 2000) operated by EMPA (Dr. Stefan Reimann). 4. Data will be compared to the Southern Hemisphere data collected at Cape Grimm, Tasmania by CSIRO (Dr. P. Fraser) 5. Data will be used to model the dispersion of the halocarbons in the high latitudes and possible consequences for radiative forcing.

Atmospheric processes Sources Long-range transport Contaminant transport Climate change Halocarbons Emissions Anthropogenic Arctic Persistent organic pollutants (POPs) Local pollution Atmosphere Biogenic