The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 100 of 129 Next
81. KINGSCALM Active Layer Monitoring

Monitoring of the active layer near Ny Ålesund as part of the international monitoring scheme CALM (Circumpolar Active Layer Monitoring)

Active layer Climate variability Climate Climate change Permafrost
82. Monitoring of arctic foxes (Alopex lagopus) in the Kongsfjord area

To evaluate temporal variation in arctic fox numbers and their food resourses in the Kongsfjorden area. The number of foxes captured per 100 trap-days are used as an index of fox density termed "Fox Capture Index". The observations of denning activity i.e. observation of number of arctic fox litters and litter size at den are termed "Fox Den Index" as a second index of fox abundance. A third index is termed "Fox Observation Index". This index is based on both observations of adult foxes seen away from breeding dens pr 100 h field work and reports on request from scientists and local people on observations of adult foxes during summer. In addition, reports on observation of fox tracks in the study area were collected in 1990-2001 as a fourth index, which were called "Fox Track Index". The field census are conducted for 10 days starting at the end of June. All dead foxes in the area should be collected.

Biology Climate Terrestrial mammals Arctic Reproduction Ecosystems

The objectives of this project is to study the effect of environmental stochasticity on the Svalbard reindeer population dynamics, nad further evaluate how this may affect reindeer-plant interactions.

Biological effects Biology Populations Climate variability Climate Climate change Terrestrial mammals Arctic Reindeer Temporal trends Ecosystems
84. ASTAR 2000

ASTAR, Arctic Study of Tropospheric Aerosol and Radiation is a a joint German (AWI Potsdam) - Japanese (NIPR Tokyo) campaign with participation from NASA LaRC Hampton, VA (USA). In addition to AWI, NIPR, and NASA LaRC the following institutions contributed to the project: Hokkaido University (Japan), Nagoya University (Japan), Norwegian Polar Institute Tromsoe/ Longyearbyen (Norway), NILU Kjeller (Norway), MISU Stockholm (Sweden), NOAA-CMDL Boulder, CO (USA) and Max Planck Institute for Aeronomy Katlenburg-Lindau (Germany). The campaign is based on simultaneous airborne measurements from the German research aircraft POLAR 4 and ground-based measurements in Ny-Ålesund. The main goals of the project are - to measure aerosol parameters of climate relevance, like extinction coefficient, absoprtion coefficients and phase function. - to create an Arctic Aerosol Data Set for climate impact investigation by using the regional climate model HIRHAM. - to carry out comparison measurements with the SAGE II (Stratospheric Aerosol and Gas Experiment) and the ground based Raman-Lidar.

Radiation Atmospheric processes Phase function Absoprtion coefficients HIRAM Climate variability Climate Climate change Aerosol Arctic Raman-Lidar Atmosphere Extinction coefficient SAGE II
85. SOLVE: SAGE III Ozone Loss and Validation Experiment

In preparation to the launch of the SAGE III experiment in March 2001, NASA and the European Union performed the SOLVE / THESEO-2000 campaign, which had three components: (i) an aircraft campaign using the NASA DC-8 and ER-2 airplanes out of Kiruna/Sweden, (ii) launches of large stratospheric research balloons from Kiruna, (iii) validation excercises for the commissioning phase of SAGE III. The German Arctic research station Koldewey in Ny-Ålesund/Spitsbergen contributes to (i), (ii), and (iii) by performing measurements of stratospheric components like ozone, trace gases, aerosols (PSCs), temperature and winds. The measurement results were transmitted quasi online to the flight planning center in Kiruna, in order to allow a better directing of the air plane flights. In addition the Koldewey-Station has been designated a validation anchor site for the SAGE III validation. The activities are organized within a NASA accepted proposal of ground-based validation support by the NDSC Primary Station at Ny-Ålesund, Spitsbergen and by a SAGE III validation working group for Ny-Ålesund. The main observation periods are from December 1999 to March 2000.

Atmospheric processes Ozone UV radiation trace gases Climate variability Climate SAGE III Climate change aerosol THESEO-2000 PSCs Atmosphere satellite validation
86. BOS: High altitude ozone observations with a Balloon-borne Optical Sensor

In order to get detailed vertical ozone profiles above the range of standard electrochemical ozonesondes (typically 35 km), a radiosonde together with an optical ozonesensor is launchend with a special plastic foliage balloon. The balloon payload consists of a digital radiosonde (DFM 90) using GPS for altitude measurements and a two channel filter spectrometer (optical sensor) to measure the vertical ozone distribution up to more than 40 km altitude. The ozone profiles obtained by the optical sensors will be compared with ground-based microwave and lidar ozone observations as well as with the standard balloon-borne ozone measurements with electrochemical ozone sensors.

optical ozonesensor Atmospheric processes Ozone UV radiation Climate variability stratosphere Climate ozone profile Climate change ozonesonde Arctic Atmosphere balloon-borne troposphere
87. Aerosol-FTIR

The aim of the project is to study the properties (radiative effects, composition) of aerosols using FTIR emission spectroscopy. To determine seasonal changes in aerosol properties the measurements will be carried out year round on a weekly schedule.

aerosols Atmospheric processes emission spectroscopy FTIR Climate variability Climate Climate change radiative effecs Emissions Arctic Atmosphere
88. Deep Water Observing System II

1. To develop a deep water observation system 2. Detailed design document, workplan and risk register and reviewed and agreed by steering group, procurement of components. 3. Deep water tests of acoustic communications system performed. pilot data dissemination and archival system. Dry test DWOS -1 4. Deployment in near lab test environment eg. Dunstaffnage bay with regular inspections. Collect, analyse, disseminate and archive sensor and house keeping data 5. Deploy in exposed but coastal stratified site in western Irish Sea, with two visual inspections. Collect, analyse, disseminate and archive sensor and house keeping data. Liaison with Met Office regarding deployment logistics. 6. Six months Deployment at Deep Water site; Collect, analyse, disseminate and archive sensor and house keeping data; Distribute data to customers. Revisit mooring site after six months recover and redeploy. 7. Final Technical Report and Final Project Report: Second six months Deployment at Deep Water site (as decreed by steering group); Collect, analyse, disseminate and archive sensor and house keeping data. Analysis of complete data handling chain performed; impact of data on customer base assessed, recommendations for continuance of DWOS as an operational system.

Hydrography Mapping Climate variability Climate Spatial trends Environmental management Climate change Modelling Oceanography Data management Ocean currents Temporal trends
89. CANDIDOZ (Chemical and Dynamical Influences on Decadal Ozone Change)

The main objective is to establish a scientific basis for the detection of the earliest signs of ozone recovery due to Montreal protocol and its amendments. To achieve this we will select the best long-term ozone and meteorological data sets available (by ECMWF and NCEP). Ozone data will be studied by using advanced multiple regression methods developed in this project. Meteorological data would allow to determine the dynamical changes and trends and assess their role in re-distribution of stratospheric ozone in recent decades and in order to force the Chemical Transport Models to assess the relative roles of chemistry and transport in ozone changes. Finally, the synthesis of the key objectives will improve the attribution of observed ozone changes to anthropogenic influences and to the variations in a natural atmosphere.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Strstospheric ozone Arctic Atmosphere Temporal trends
90. New Particle Formation and Fate in the Coastal Environment (PARFORCE)

A dedicated study into the formation of new particles, PARFORCE (New particle formation and fate in the coastal environment), was conducted over a period from 1998-1999 at the Mace Head Atmospheric Research Station on the western coast of Ireland. Continuous measurements of new particle formation were taken over the two-year period while two intensive field campaigns were also conducted, one in September 1998, and the other in June 1999. New particle events were observed on »90% of days and occurred throughout the year and in all air mass types. These events lasted for, typically, a few hours, with some events lasting more than 8 hours, and occurred during daylight hours coinciding with the occurrence of low tide and exposed shorelines. During these events, peak aerosol concentrations often exceeded 10 6 cm -3 under clean air conditions while measured formation rates of detectable particle sizes (i.e. d > 3nm) were of the order of 10 4 -10 5 cm -3 s -1 . Nucleation rates of new particles were estimated to be, at least, of the order of 10 5 -10 6 cm -3 s -1 and occurred for sulphuric acid concentrations above 2 x 10 6 molecules cm -3 ; however, no correlation existed between peak sulphuric acid concentrations, low tide occurrence or nucleation events. Ternary nucleation theory of the H2SO4-H2O-NH3 system predicts that nucleation rates far in excess of 10 6 cm -3 s -1 can readily occur for the given sulphuric acid concentrations; however, aerosol growth modelling studies predict that there is insufficient sulphuric acid to grow new particles (of »1 nm in size) into detectable sizes of 3 nm. Hygroscopic growth factor analysis of recently-formed 8 nm particles illustrate that these particles must comprise some species significantly less soluble than sulphate aerosol. The nucleation-mode hygroscopic data, combined with the lack of detectable VOC emissions from coastal biota, the strong emission of biogenic halocarbon species, and the finger-printing of iodine in recently-formed (7 nm) particles suggest that the most likely species resulting in the growth of new particles to detectable sizes is an iodine oxide as suggested by previous laboratory experiments. It remains an open question whether nucleation is driven by self nucleation of iodine species, a halocarbon derivative, or whether first, stable clusters are formed through ternary nucleation of sulphuric acid, ammonia and water vapour, followed by condensation growth into detectable sizes by condensation of iodine species. Airborne measurements confirm that nucleation occurs all along the coastline and that the coastal biogenic aerosol plume can extend many 100s of km away from the source. During the evolution of the coastal plume, particle growth is observed up to radiatively-active sizes of 100 nm. Modelling studies of the yield of cloud-condensation nuclei suggest that the cloud condensation nuclei population can increase by »100%. Given that the production of new particles from coastal biogenic sources occurs at least all along the western coast of Europe, and possibly many other coastlines, it is suggested that coastal aerosols contribute significantly to the natural background aerosol population.

Atmospheric processes Climate Aerosol Particle Formation Atmosphere
91. Quantification of Aerosol Nucleation in the European Boundary Layer (QUEST)

The International Panel on Climate Change (IPCC) has very recently revised the prediction of global average temperature increase during the next century from 1.0-3.5 to 1.4-5.8 K. The increase in the upper limit of the prediction is largely due to the role of aerosols in the climate of the Earth: it is believed that reduction of pollution will result in reduced direct and indirect (via clouds) scattering of sunlight back to the space. However, as can be seen from the large uncertainty of the estimated temperature increase, not enough is known about the role of natural and anthropogenic aerosols in climate processes. This is also reflected in the Key Action 2, under the RTD priority 2.1.1, calling for ”… quantification and prediction of … concentration of … aerosols, in particular the fine fraction of particles and their precursors”. The concentration of aerosols is controlled by their sources and sinks, and thus the prediction of particle concentration requires the quantification of aerosol source terms. The main objective of QUEST is to quantify the number of new secondary aerosol particles formed through homogeneous nucleation in the European boundary layer, and the relative contributions of natural and anthropogenic sources. The role of homogeneous nucleation in the formation of new atmospheric particles was realized in the 1990s, and considerable effort has been devoted to studies of aerosol formation in various parts of the Globe. The longest continuous data series of nucleation events has been obtained at a forest field station in Finland, where aerosol size distributions between 3 and 150 nm in diameter have been recorded in 10 minute intervals since the beginning of 1996 [1]. Nucleation events occur in this rather clean Boreal area roughly 50-60 times per year, the highest event frequency taking place in the spring months (March-May). The concentration of new particles per cc of air formed during one event varies between roughly 100-10 000. Taking the average number to be one thousand, and assuming that the nucleation takes place in a well mixed boundary layer having a height of 1000 m, it can be estimated that the aerosol source term in the Boreal forest area is on the order of 51013 m-2 per year. This is on the same order as the global aerosol yield estimated from primary emissions [2]. The number given here is very crude as we can at present only guess the vertical extent of the nucleation zone; however, it clearly shows that homogeneous nucleation events influence atmospheric particle concentrations at least at regional scales, and possibly also globally. Many features of the Boreal nucleation events have been revealed thus far. Necessary (but not sufficient) conditions include sunny weather, vertical mixing of air in the morning (prior to the detection of the event) [1], and a treshold value of a quantity that depends on radiation intensity (vapor source) and pre-existing aerosol size distribution (vapor sink) [3]. The springtime events always seem to take place in Polar or Arctic air masses [4], but so far it is unclear whether the meteorology is similar during other seasons. Aerosol flux measurements [5] indicate that the particles are formed aloft, but the vertical extent of the nucleation layer is unknown. However, there is clear evidence from simultaneous measurements at various locations, that the horizontal extent of the areas in which the nucleation takes place can be hundreds and in some cases even thousands of kilometers [1]. No direct correlation of nucleation events with SO2 concentrations has been found; however the product of SO2 concentration, ammonia concentration, and calculated OH concentration correlates with the events (personal communication). These results hint that the recently suggested ternary sulfuric acid-ammonia-water nucleation mechanism of small clusters, followed by the growth of the clusters due to condensation of other (possibly organic) vapors [6], may be operational in the Boreal forest area. Furthermore, there is experimental evidence that nucleation event particles in the 4-5 nm range are soluble in butanol (working fluid of condensation particle counters), which indicates organic composition. However, the confirmation of the ternary nucleation hypothesis requires simultaneous measurements of sulfuric acid vapor and ammonia, and further studies of the composition of the nucleated particles. Furthermore, to facilitate large-scale modelling studies, the vertical extent of the nucleation events, as well as the meteorological conditions during non-springtime events have to be investigated. Measurements of nucleation events at a more Central European location indicate that SO2 levels increase during the majority of nucleation events [7]. It can be hypothesized that a part of observed nucleation events (minority in Central Europe, majority in the Boreal area) are ”natural” and a part are affected (or even caused) by pollution (majority in Central Europe, minority in the Boreal area). The confirmation of this hypothesis and implementation of the pollution type nucleation mechanism into a large-scale model requires carefully designed measurements from a location which is preferably Southern European as there is very little available nucleation data from this area. One of the few observations of new particles in Southern Europe [8] is from the Italian site where we plan to study the frequency, meteorology, vertical extent, and chemical precursors of nucleation events. Another type of nucleation events has been observed all along the western coast of Europe and have been studied more particularly at the west coast of Ireland [9]. These events, which have a duration of the order of 4 hours and up to 8 hours, occur almost daily around low tide and under conditions of solar radiation, indicating photochemical source. Incredibly, the peak new particle concentrations often exceed 106 cm-3, making this the strongest natural source region of atmospheric particles. The exact chemical mechanisms leading to the production of coastal particles still remains an open question. As in other environments, there appears to be sufficient sulphuric acid vapour to participate in ternary nucleation with ammonia and water, however, there is insufficient sulphuric acid to grow these particles to detectable sizes [9]. The most probable chemical species involved in the production or growth of these particles is Iodine, or an Iodine Oxide, produced photochemically from biogenic halocarbon emissions [9]. The production of particles from the photolysis of CH2I2 in the presence of ozone has been confirmed by recent smog chamber experiments [10]. While the concentration of new particles in this environment is extraordinarily high, its impact on background particle and CCN contribution remains unclear and needs to be quantified. A limited single study [11] has shown that the coastal aerosol plume is detectable up to several hunderds of km downwind and that the new coastal particles readily grow into CCN sizes (larger than 100 nm). An intensive campaign at the coast of Ireland will quantify the flux of both biogenic halocarbon precursor gases and the yield of new, and radiatively-active particles in the European coastal boundary layer. The objective of QUEST is to determine the source strength of new particle formation in the three above mentioned cases. The specific objectives are: 1) To fill in gaps that exist in the understanding of chemical and physical pathways leading to homogeneous nucleation of new aerosol particles; 2) To understand the meteorological conditions required for the events to take place and to be able to predict the horizontal and vertical extent of the events; 3) To implement parametrized representations of the nucleation mechanisms, based on the information from 1) and 2), to an European scale model in order to determine the source strength of homogeneous nucleation of aerosol particles in the European boundary layer.

Atmospheric processes Sources Climate Modelling Aerosol Particle Formation Atmosphere Temporal trends
92. Remote sensing of the radiative properties of arctic aerosols at solar and thermal infrared wavelengths and retrieval of aerosol microphysical properties

The current scientific knowledge does not allow estimating accurately the surface radiative forcing caused by tropospheric aerosols and their influence on the evolution of the Earth climate. The radiative forcing depends on the optical properties of the aerosols at solar and thermal infrared wavelengths. These optical properties depend, in turn, on the chemical composition and size of the aerosols. Remote sensing with passive radiation sensors operating in the above-mentioned spectral ranges allows to measure the optical properties of the aerosols and to characterise their temporal variability. These data are needed for regional climate simulations of the Arctic, particularly for delineating the impact of the Arctic haze phenomenon. In this project, a synergetic effort will be made to obtain information about the radiative and microphysical properties of springtime arctic aerosols. Therefore, a polarisation-spectrometer for the solar spectral range, which is currently developed at the Free University of Berlin as a variant of the FUBISS spectrometer, will be operated from the surface in coincidence with the Fourier Transform InfraRed-spectrometer (FTIR) installed at Ny-Aalesund by the AWI. The former instrument measures the intensity and polarisation of the scattered solar radiation from the visible to the near-infrared. The latter measures the radiation emitted by the Atmosphere itself in the thermal infrared window region. Together, they thus provide a wealth of information about the aerosol optical properties at the interesting wavelengths (spectral optical depth, single-scattering albedo, and asymmetry factor of the phase function), which will allow inferring the aerosol microphysical properties. Complementary measurements of the aerosol microphysical properties will be provided by an aerosol volatility analyser, which is maintained by the University of Leeds and will also be brought to Ny-Aalesund. This instrument comprises a fast response scanning volatility system and an optical particle counter. From the thermal response of the aerosol number and the change in the size distribution conclusions can be inferred about the chemical composition and the state of mixing of aerosols as a function of size.

Aerosols Atmospheric processes Arctic haze FTIR Climate variability Climate Climate change Arctic Atmosphere Troposphere

Aim of the project is to develop a cost-effective long-term European observation system for halocarbons and to predict and assess impacts of the halocarbons on the climate and on the ozone layer. Beside the routine observations within the NDSC it is planned to perform with FTIR (Fourier Transform Infrared Spectroscopy) absorption measurements of CFCs (e.g. SF6, CCl2F2, CHF2Cl) and related species on much more observation days.

Atmospheric processes SOGE Ozone FTIR Climate variability Climate NDSC Climate change Halocarbons Modelling Arctic Atmosphere Temporal trends
94. SCIAMACHY validation with FTIR

The aim of the project is to perform solar and lunar absorption measurements of atmospheric trace gases for the valdation of the SCIAMACHY satellite. Besides the routine observations within the NDSC it is planned to perform more intense measurements, especially during the satellite overpasses.

Atmospheric processes Ozone FTIR Trace gases Climate variability Stratosphere Climate NDSC Climate change Arctic SCIAMACHY Atmosphere Troposphere Satellite validation
95. Marine aerosols with LIDAR and photometer

Situated in the Arctic Ocean the planetary boundary layer over Ny Ålesund is dominated by marine aerosols. Hight and time variation of boundary layer aerosols are examined with the tropospheric lidar system in Ny Ålesund. To determine the aerosol and its optical properties more exactly information from more wavelenghts are necessary as the sun-photometer at the Koldewey Station can provide. First combined evaluation of photometer and LIDAR data during the ASTAR-campaign in spring 2000 demonstrated feasibility and advantages of this method for the free troposphere. Furthermore this method is to be applied on boundary layer aerosol to research also its optical properties.

Aerosols Atmospheric processes Climate variability Climate NDSC ASTAR Climate change Arctic Water vapour Atmosphere LIDAR Troposphere Boundary layer Photometer
96. Arctic Airborne Measuring Program 2002

The subject is to determine the horizontal distribution of aerosol and trace gases by airborne measurements with the Gulfstream III (transarctic flight), ground based measurements in Ny Ålesund (Koldewey Station, Rabben) and satellite measurements with SAGE II / SAGE III. Objective is to get vertical and horizontal aerosol profiles, to research the trace gase variations in the Arctic and to compare remote sensing und in situ measurements.

Aerosols Atmospheric processes Trace gases Climate variability Climate Spatial trends Climate change Arctic Atmosphere
97. Water vapour balloon soundings

In situ measurements of the tropospheric and tropopause and if possible lower stratospheric water vapour content will be carried out with different balloon sondes. Start of up to three balloons with Snow White Sensor-Package prepared by a team from the University of Nagoya and University of Kyoto. Possibly water vapour sondes from NOAA (S. Oltmans) will be started within the scope of an EU-project. This may happen earliest in autumn.

Aerosols Atmospheric processes Climate variability Stratosphere Climate Climate change Soundings Arctic Water vapour Tropopause Atmosphere Tropospere
98. Stratospheric ozone loss determination (Match)

By launching several hundred ozonesondes and by ozone lidar measurements at many Arctic and sub-Arctic stations, one of them Ny-Ålesund, the stratospheric chemical ozone loss will be determined. The launches of all stations will be coordinated by analysis of trajectory calculations based on analysis and forecast wind fields. The aim is to get as many ozone sounding pairs as possible, each of them linked by trajectories in space and time. A statistical description of the ozone differencies given by the first and the second measurement of individual sonde pairs will yield the chemical ozone loss with spatial and time resolution. Four similar campaigns took place in the Arctic and in the mid-latitudes covering the time period of Januar to March in each of the last four winters. In the first three winters high ozone depletion rates (20 - 50 ppbv per day) were determined in some height levels within the polar vortex. In the height level of the ozone maximum an integrated ozone loss (during the winter) in the order of 60 % have been found. These are record ozone losses for the Arctic polar region. In the last winter the ozone depletion rates had been much lower due to moderate temperatures in the stratosphere.

Atmospheric processes Ozone MATCH Climate variability Stratosphere Climate Spatial trends Climate change Ozonesonde Arctic Atmosphere Temporal trends

The FTIR (Fourier Transform Infrared Spectroscopy) has been established as a powerful tool for measurements of atmospheric trace gases. Using the sun or moon as light source, between 20-30 trace gases of the tropo- and stratosphere can be detected by their absorption features. The analysis of the spectra allow to retrieve the total zenith columns of the trace gases. The aim of the SAMMOA project is to study the stratospheric ozon depletion during the summer time period. While the processes during winter/spring are investigated in detail the summertime ozone loss has not been studied so far. Therefore FTIR solar absorption measurements of ozone and related species are to be done on much more observation days beside the routine observations within the NDSC

Atmospheric processes Ozone FTIR Trace gases Climate variability stratosphere Climate NDSC Climate change Arctic Summertime ozone loss SAMMOA Atmosphere
100. DOAS measurements of atmospheric trace gases (NDSC)

Quasi-continuous observation of several atmospheric species are performed by measuring the absorption of visible and near ultraviolet sunlight scattered from the sky or in direct moonlight. Column abundance of molecules such as ozone, NO2, OClO, NO3, BrO, HCHO and IO are derived by means of a Differential Optical Absorption (DOAS) algorithm and a radiative transfer model. These activities are part of calibration and validation studies of different satellite experiments (GOME, SAGE III, SCIAMACHY). Since 1999 the instrument is part of the Network of the Detection of Stratospheric Change (NDSC). The instrument has been installed in 1995 as the second UV/vis instrument from the Institute of Environmental Physics. One similar setup in Bremen is continuously running with the exception of short maintenance breaks since 1993.

Atmospheric processes Ozone Trace gases Climate variability Climate NDSC Climate change Arctic DOAS Atmosphere Satellite validation