Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 81 - 100 of 955 Next
81. North Slope Science Initiative (NSSI) (NSSI)

This mission of the North Slope Science Initiative is to improve the regulatory understanding of terrestrial, aquatic and marine ecosystems for consideration in the context of resource development activities and climate change. The vision of the North Slope Science Initiative is to identify those data and information needs management agencies and governments will need in the future to develope management scenarios using the best information and mitigation to conserve the environments of the North Slope

Ecosystems Human health Oceanography
82. Population Biology and Monitoring of Dunlin

Studying the population biology and monitoring the population status of Dunlin. The population under study ilives in a coatal tundra area in Northern Norway.

Biodiversity Biological effects Biology Climate variability Terrestrial Birds
83. Monitoring of broadband longwave and shortwave radiance at METNO Arctic stations

    These observations was originally funded through IPY projects (iAOOS-Norway and IPYTHORPEX), they are now maintained by the Norwegian Meteorological Institute. The observations at Bjørnøya started April 2008, Jan Mayen October 2008 and Hopen is scheduled 2009.

    Objectives are:

    1. Provision of algorithm tuning and validation data for EUMETSAT OSISAF radiative fluxes products (http://osisaf.met.no/).
    2. Provision of validation data for numerical weather prediction models.
    3. Generation of time series for use in time series analysis of atmospheric radiative conditions.
    4. Validation data for studying ocean and atmosphere heat exchange processes using bulk parameterisations.
    Atmosphere
    84. Zooplankton Monitoring in the European Arctic Gateway (ZooMon-EAG)

    Zooplankton make essential links between producers and predators in marine ecosystems, so mediating in the CO2 exchange between atmosphere and ocean They can be indicators of climate variability, and changes in zooplankton species distribution and abundance may have cascading effects on food webs. West Spitsbergen Current is the main pathway of transport of Atlantic waters and biota into the Arctic Ocean and the Arctic shelf seas. West Spitsbergen Shelf coastal and fjordic waters, therefore, are natural experimental areas to study mechanisms by which the Atlantic and Arctic marine ecosystem interact, and to observe environmental changes caused by variability in climate. The main objectives of the zooplankton monitoring are: a) to study patterns and variability in composition and abundance in zooplankton of the West Spitsbergen Current and the West Spitsbergen fjords and coastal waters; b) to find out environmental factors responsible for the observed patterns and variability in zooplankton, and to understand possible relations between zooplankton and their environment on different space and time scales; c) to observe and monitor the variability in zooplankton in relation to local and global climate changes.

    Ecosystems zooplankton
    85. The Icelandic Centre for Research - Rannsóknamiðstöð Íslands, RANNÍS (RANNIS)

    RANNIS reports to the Ministry of Education, Science and Culture and operates according to the Act on Public Support for Scientific Research ( No. 3/2003).  Hallgrímur Jónasson is the General Director of RANNIS.

    The Icelandic Centre for Research (RANNIS) supports research, innovation, education and culture in Iceland. RANNIS cooperates closely with the  Icelandic Science and Technology Policy Council and provides professional assistance in the preparation and implementation of the national science and technology policy.

    RANNIS administers competitive funds in the fields of research, innovation, education and culture, as well as strategic research programmes.

    RANNIS coordinates and promotes Icelandic participation in European programmes such, as  Horizon 2020  Erasmus+ and  Creative Europe.

    RANNIS monitors resources and performance in R&D and promotes public awareness of research and innovation, education and culture in Iceland.  Rannis is the Icelandic national contact point for SAON.

    At the end of 2014, RANNIS had a permanent staff of 41. Apart from regular staff, RANNIS also relies on the involvement of external contacts, including scientists and technical experts who assist in the evaluation of grant proposals.

    The main competitive funds administered by RANNIS have the following annual budgets for 2014: The Icelandic Research Fund: 1.185 MISK, The Infrastructure Fund: 106 MISK, The Technology Development Fund: 988 MISK.

    Arctic assessment Monitoring Research
    86. Institute of Freshwater Fisheries – Veiðimálastofnun (Veiðimálastofnun)

    The Institute of Freshwater Fisheries (Veidimalastofnun) is a Governmental institution managing freshwater biota and freshwater fisheries in Iceland. Its principal tasks are research of biota in rivers and lakes, research on freshwater fish stocks supervision and guidance to river and lake fisheries associations concerning sustainable fisheries. Among the Institute of Freshwater Fisheries main tasks is research and consultation concerning impact assessment of projects or structures affecting rivers and lakes, creation and management of data banks on rivers and lakes, their biota and fisheries. Main gaps: Not specified Network type: ‐ Thematic observations ‐ Field stations

    Fish
    87. Stofnun Vilhjálms Stefánssonar ‐ The Stefansson Arctic Institute, SAI (SAI)

    The Stefansson Arctic Institute is an Icelandic governmental (Ministry for the Environment) research institute with focus on the Arctic region, also involved in public dissemination of research, exhibits, and international collaboration on northern human dimension issues, social and cultural change and human development, economic development and interdisciplinary aspects of human‐environmental relations in the Circumpolar Arctic and Northern North Atlantic. The institute is involved in a range of research and information dissemination projects and programmes. The institute was responsible for leading and hosting the project secretariat and publishing the Arctic Human Development Report (AHDR), the first comprehensive scientific assessment of human welfare, social development and cultural change in the circumpolar Arctic, and the follow-up projects Arctic Social Indicators (ASI-I, and ASI-II) 2006-2010. The Institute leads the work on the second AHDR (2010-2014); and follow-up work to the ASI projects includes the implementation of an Arctic Social Indicators monitoring system with a piloting of a monitoring system in the Inuvialuit region of Canada, North West Territories. The ASI indicators work is also being applied in community case studies on the Alaska North Slope Borough, as well as the North-Atlantic region, Yamal-Nenets, Sakha-Yakutia, and Nunavut. Main gaps: Not specified Network type: ‐ Thematic observations ‐ Community based observations

    Human health
    88. Mývatn Research Station

    The Mývatn Research Station is an ecological field research institute under the Icelandic Ministry for the Environment. It operates in close cooperation with the University of Iceland. Its main task is to carry out and stimulate research that aids conservation and management of the Mývatn-Laxá nature protection area of international interest. Research activities are twofold: (1) long-term monitoring of the ecological situation; (2) short term research projects focusing on certain aspects of the ecosystem. Ecological monitoring started in 1975. It focuses on the entire food web of the lake. The nature of Mývatn and Laxá Myvatn is a large lake at the edge of the volcanic zone cutting through North Iceland. 
Its water wells up in a number of springs on the lake shore. 
Craters and volcanoes dominate the landscape. 
Several famous volcanoes are in the vicinity such as Hverfjall (Hverfell), Krafla 
and the Threngslaborgir crater row
. Volcanic activity in the region gives rare insight into the process of continental drift.
 Many strange lava formations occur, Dimmuborgir and Höfdi being the most famous ones, 
also the pseudocrates (rootless vents) which are characteristic for the lake shore. The lake itself and its outflow the River Laxá is the most fertile freshwater system in Iceland.
 The bird life and fishing (including Atlantic Salmon) is extremely rich. Owing to the position
 of Iceland between two continents and on the border between the arctic and boreal ecozones the species composition of the biota is unique. The richness 
is based on phosphate-rich groundwater, relatively high insolation 
and optimal water depth for aquatic plants and waterfowl. Fishing and harvesting of duck eggs has always been important for the local household.
 Hydro- and geothermal power extraction as well as mining activities
 are currently the main threats to the landscape and ecology of the area. The area attracts large numbers of tourists. The local nature undergoes substantial changes because of soil erosion, volcanic activity, mining, geothermal power utilization, agriculture, changes in grazing regime, structures for communication and other building activities. The area is a protected nature reserve, managed by the Environment and Food Agency of Iceland
, backed up by scientific information from the Myvatn Research Station. The Myvatn Research Station The Myvatn Research Station is a research institute focusing on Lake Mývatn and the outflowing river Laxá and their water catchment, with the overall aims of understanding and foreseeing changes in the ecosystem and its surroundings. Monitoring of the lake biota The overall aim of monitoring is to follow trends in the biota in order to detect undesired changes that may be caused by human activities and call for management actions. The monitoring is based on simple, well tested and ecologically meaningful methods that tackle various levels of the foodweb to maximize interpretability. Most monitoring projects are backed up by focused short-term research projects and are designed to yield usable data for scientific publications. The monitoring is carried out in cooperation with the University of Iceland, University of Wisconsin (USA), the Nature Center of North-East Iceland, the Institute of Freshwater Fisheries, and the Hólar College. Monitoring of other areas For comparative purpose the Myvatn Research Station is actively engaged in monitoring of two other wetland areas in North Iceland, those of Svartárvatn and Svarfadardalur. Food-web research The monitoring has revealed decadal fluctuations in the food web that have generated a lot of interest. Our research has focused on the potential drivers of the fluctuations, especially the interaction between the midge larvae and their food organisms (diatoms). We also do research on the effect of fluctuations in the populations of food organisms (midges and crustaceans) on the population dynamics of the vertebrates feeding on them (fish and waterfowl). Palaeoenvironment There is also an emphasis on long term palaeorecords of the lake and terrestrial ecosystems, including human impact. The research station organises, carries out or supports research on the palaeoenvironment of Lake Mývatn and the surrounding landscape. The main projects include (1) mapping of Viking Age turf wall systems revealing land division and management in the early days of Iceland’s history; (2) mapping and dating of charcoal pits and other features related to deforestation in the medieval period; (3) detailed reconstruction of the lake biota of Mývatn from remains in the lake sediment; (4) archaeological excavation of a midden, covering the whole historical period (870 to present) revealing the history of human use of the local resources; (5) historical documents of wildlife abundance. All this research is carried out in collaboration with a number of universities in the US., the UK and Scandinavia.

    Ecosystems
    89. Hafrannsóknastofnun ‐ Icelandic Marine Research Institution, MRI (MRI)

    MRI's activities are organized into three main sections: Environment Section, Resources Section and Fisheries Advisory Section. Marine Environment Section: A large part of the sections work deals with environmental conditions (nutrients, temperature, salinity) in the sea, marine geology, and the ecology of algae, zooplankton, fish larvae, fish juveniles, and benthos. Amongst the larger projects undertaken within the Environment Section are investigations on currents using satellite monitored drifters and other modern technology, assessment of primary productivity, secondary productivity, overwintering and spring spawning of zooplankton, and studies on spawning of the most important exploited fish stocks. Marine Resources Section: Investigations are undertaken on the exploited stocks of fish, crustaceans, mollusks and marine mammals. The major part of the work involves estimating stock sizes and the total allowable catch (TAC) for each stock. Examples of some large projects within the Marine Resources Section are annual ground fish surveys covering the shelf area around Iceland and surveys for assessing inshore and deep‐water shrimp, lobster, and scallop stocks. The pelagic stocks of capelin and herring are also monitored annually in extensive research surveys using acoustic methods. Further, in recent years an extensive program concentrating on multi‐species interactions of exploited stocks in Icelandic waters has also been carried out. A designated project for improving understanding of the dynamics of the ecosystem deep north of Iceland has been conducted in recent years. The Fisheries Advisory Section: The Fisheries Advisory Section scrutinizes stock assessments and prepares the formal advice on TAC´s and sustainable fishing strategies for the government. Supporting departments: Important supporting departments are, the Electronic Department and the Fisheries Library. The Electronic Department supervises installation, testing and maintenance of research instruments. The Fisheries Library collects books and periodicals in all fields of marine sciences and publishes the MRI report series. 20 SAON: Inventory on Monitoring Networks Iceland Main gaps: Not specified Network type: ‐ Thematic observations ‐ Field stations ‐ Community based observations

    Fish Oceanography Human health Ecosystems
    90. Náttúrufræðistofnun Íslands ‐ The Icelandic Institute of Natural History, IINH (IINH)

    The Icelandic Institute of Natural History dates back to 1889 when the Icelandic Natural History Society established a Natural History Museum in Reykjavik. Now owned and run by the State, the Institute conducts basic and applied research on the nature of Iceland in the fields of botany, geology and zoology. The Institute maintains scientific specimen collections and holds data banks on the Icelandic nature, i.e. all animal and plant species, rocks and minerals, it assembles literature on the natural history of Iceland, operates the Icelandic Bird‐Ringing Scheme, prepares distribution, vegetation, and geological maps, conducts research in connection with environmental impact assessments and sustainability, advises on sustainable use of natural resources and land use, and monitors and assesses the conservation value of species, habitats and ecosystems. Member/connected to global network: IINH is the national representative in the Bern Convention on the conservation of European wildlife and natural habitats and participates in the several working groups of the Convention in areas that are relevant to Iceland. IINH is the national representative in The Conservation of Arctic Flora and Fauna (CAFF) and has had a representative on the board of CAFF from the beginning. IINH participates in expert groups on marine birds, vegetation, sanctuaries, and biodiversity monitoring in the Arctic within the CAFF. IINH is further participating in the work of a Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) under the Convention on Biological Diversity (CBD). IINH is the national representative in the Global Biodiversity Information Facility (GBIF) and participates in The North European and Baltic Network on Invasive Alien Species (NOBANIS) on behalf of Iceland. Type of network: ‐ Species monitoring ‐ Area monitoring, incl. protected areas ‐ Thematic observations ‐ Community based observations ‐ Endangered species Main gaps: Not specified Network type: ‐ Species monitoring ‐ Area monitoring, incl. protected areas ‐ Thematic observations ‐ Community based observations ‐ Endangered species

    Ecosystems
    91. Veðurstofa Ísland ‐ Icelandic Meteorological Office, IMO (IMO)

    The main purpose of IMO is to contribute towards increased security and efficiency in society by: • Monitoring, analyzing, interpreting, informing, giving advice and counsel, providing warnings and forecasts and where possible, predicting natural processes and natural hazards; • issuing public and aviation alerts about impending natural hazards, such as volcanic ash, extreme weather, avalanching, landslides and flooding; • conducting research on the physics of air, land and sea, specifically in the fields of hydrology, glaciology, climatology, seismology and volcanology; • maintaining high quality service and efficiency in providing information in the interest of economy, of security affairs, of sustainable usage of natural resources and with regard to other needs of the public; • ensuring the accumulation and preservation of data and knowledge regarding the long-term development of natural processes such as climate, glacier changes, crustal movements and other environmental matters that fall under IMO‘s responsibility. IMO has a long-term advisory role with the Icelandic Civil Defense and issues public alerts about impending natural hazards. The institute participates in international weather and aviation alert systems, such as London Volcanic Ash Advisory Centre (VAAC), the Icelandic Aviation Oceanic Area Control Center (OAC Reykjavík) and the European alarm system for extreme weather, Meteoalarm. Network type: Thematic observations in 6 different fields

    Geology Geophysics Pollution sources Sea ice Oceanography Atmosphere Ecosystems
    92. Íslenskar Orkurannsóknir ‐ Iceland Geosurvey, ÍSOR (ÍSOR)

    Iceland GeoSurvey ÍSOR is a self‐financing, state‐owned, non‐profit institution in the field of natural sciences, it’s main activity being related to the geothermal industry in Iceland and abroad. It was established 2003, when the GeoScience Division of Orkustofnun (the National Energy Authority of Iceland), was spun off as a separate entity according to the law of Iceland GeoSurvey no. 86, March 26th 2003 (http://www.althingi.is/lagas/135a/2003086.html). The main role of ÍSOR is to work on projects and research in the field of natural resources and energy, as the directive board of the institute decides. ÍSOR offers research consulting services worldwide on most aspects of geothermal exploration, development, and utilization, and provide training and education on related issues. It is based on six decades of continuous experience in the field of geothermal and hydropower research and development. The focus is on geothermal exploration, development, and utilization, but cover also many other geoscience‐related fields as well, including groundwater studies, marine geology, and environmental monitoring. Main gaps: Not specified Network type: Field stations Thematic observations

    Geology Soils Geophysics Environmental management
    93. International Arctic Systems for Observing the Atmosphere (IASOA)

    The main mission of the International Arctic Systems for Observing the Atmosphere (IASOA) is coordination of atmospheric data collection at existing and newly established intensive Arctic atmospheric observatories. Data of interest to the IASOA consortium include measurements of standard meteorology, greenhouse gases, atmospheric radiation, clouds, pollutants, chemistry, aerosols, and surface energy balances. These measurements support studies of Arctic climate change attribution (why things are changing), not just trends (how things are changing). IASOA is responsive to growing evidence that the earth system may be approaching environmentally critical thresholds within decadal time scales. The information from IASOA will not only enhance scientific understanding but will also support decisions by the global community regarding climate change mitigation and adaptation strategies. Main gaps: Not all observatories are members of established global networks such as GAW and BSRN. It is recommended that IASOA observatories that are not members of these global networks be evaluated for potential membership and that roadblocks to membership be investigated. Other types of measurement gaps include, but are not limited to: (1) Radar-lidar pairs at each observatory to assess cloud properties; (2) Flux towers at each observatory for methane and CO2 fluxes; (3) Aerosol measurements at each observatory; and (4) Surface and upper air ozone measurements at each observatory. Network type: Predominantly atmospheric measurements.

    Atmosphere Climate
    94. The Arctic Station, Qeqertarsuaq, Greenland, University of Copenhagen (AS-Q)

    The Arctic Station is located on the south coast of the Disko Island in central west Greenland. It is thus facing the Disko Bay and is characterized by an arctic, marine climate. There are 3 building comprising guest facilities, staff accomodation, laboratory and library that are located in a nature sanctuary, approximately 1 km west of a small town, Qeqertarsuaq (formerly Godhavn), with ca. 1100 inhabitants. Within the town community is located all necessary service facilities, incl. several shops, bank, postoffice, church and a hospital. The station offers a 'state of the art' platform for year-round environmental research. The Arctic Station maintains a stat-of-the-art automatic weather station located in the immediate vicinity of the Arctic Station. The datalogging at Arctic Station (every half hour) comprises: air temperatur, humidity, incoming and outgoing radiation, wind speed and direction, rainfall, ground temperatures (5, 60 and 150 cm below surface) and temperature in solid rock 2 metre below surface. In addition to the above the station also maintains a freshwater, a marine and a terrestrial monitoring program. The whole moitoring program is call DiskoBasic.

    Active layer algal blooming aquatic monitoring Snow and ice properties
    95. Circumpolar Biodiversity Monitoring Program (CBMP), Marine, Coastal, Freshwater and Terrestrial subgroups

    CBMP is a cornerstone monitoring program of Conservation of Arctic Flora and Fauna (CAFF). It is a international network of scientists, government agencies, Indigenous organizations and conservation groups working together to harmonize and integrate efforts to monitor the Arctic's living resources. (... more to be edited from the co-lead countries)

    Biodiversity
    96. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation

    - Provide continuous measurements of high scientific quality of total ozone and solar ultraviolet radiation, to be used in assessments related to health- and environmental issues. - Provide data that can be used for short term forecasting and assessments of long term changes of total ozone and UV radiation. - Provide information to the public and scientific communitee on the status and the development of the ozone layer and UV radiation - Provide information to the public on sun protection when episodes of high UV Index may occur.

    Atmosphere
    97. The Terrestrial Ecosystems Monitoring Programme (TOV)

    TOV is based on integrated monitoring where species and ecosystems are seen in context, providing better opportunities to interpret the results. TOV areas include seven monitoring sites in Boreal birch forest, all nature-protected areas. Lund in the south to Dividalen north is monitoring; lichen and algae on trees, ground vegetation, rodents, passerine birds, grouse, Gyrfalcon and Golden Eagle. There are also 10 Boreal spruce forest areas monitored, only for ground vegetation. The range of areas reflects both climate variability and differences in impacts from long-range pollutants throughout the country.

    Monitoring of flora and vegetation includes records of species and species composition of ground vegetation and mosses, lichens and fungi on tree trunks. Fauna monitoring includes population and reproduction monitoring for species which may indicate effects of long-range transboundary air pollution, and population monitoring of key species. In addition, a nationwide survey of selected variables, prevalence of lichen and algae on trees, as well as contaminants in wildlife species and eggs from birds of prey. Observed changes are considered in relation to the influence of anthropogenic factors.

    Ecosystems
    98. Radnett – a national network for monitoring radioactivity in the environment

    The Norwegian Radiation Protection Authority is responsible for a nationwide network of 33 stations that continuously measure background radiation levels. The network was established in the years following the Chernobyl accident in 1986, and was upgraded to a new and modern network in the period 2006-2008. Additional stations were added in 2009. The purpose of the monitoring network is to provide an early warning if radioactive emissions reach Norway.

    Arctic Atmosphere Long-range transport Monitoring Radionuclides
    99. UV-radiation in Norway

    The UV-monitoring network has provided 15 years of high quality, continuous measurements of solar UV radiation. The network is the hub of all activities related to UV forecasting and information to the public, aiming to reduce the high number of cases of acute and chronic negative health effects from excessive UV exposure.

    UV index UV radiation total ozone cloud optical depth erythemal UV doses
    100. Monitoring of fish and seafood

    Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.

    137Cs 99Tc and 210Po Environmental management Fish Human health Radioactivity Radionuclides shellfish