The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 61 - 80 of 148 Next
61. SKERRIES - stratospheric climatology by regular balloon-borne

Objective: to collect climatology information on the seasonal and year-to-tear variability of stratospheric CFCs, water vapour and atmospheric electrical parameters.

Atmospheric processes Geophysics Climate variability Spatial trends Climate change Arctic Atmosphere Temporal trends
62. Long-Term and Solar Variability effects in the Upper Atmosphere

Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.

Atmospheric processes Noctilucent clouds Geophysics Climate variability Solar Proton Events Climate Climate change Modelling Emissions Arctic Atmosphere Polar mesospheric summer echoes (PMSE) Temporal trends
63. LAPBIAT Upper Troposphere Lower Stratosphere Water Vapor Validation Project: LAUTLOS - WAVVAP

The focus of this project is the improvement of water vapour measurement techniques in the upper troposphere and lower stratosphere. Routine measurements of water vapour with high accuracy in these altitudes are an unsolved problem of meteorological measurements up to now. Water vapor is the dominant greenhouse gas in the earth's atmosphere. Recent model calculations show that observed water vapour increases in the stratosphere contribute significantly both to surface warming and stratospheric cooling. In addition to climate change both the direct chemical and indirect radiative effects of stratospheric water changes in ozone chemistry are important as well. Despite of many activities in the past ten years, accuracies of the available methods for measuring the water vapour vertical profile in the free atmosphere are still not sufficient. Therefore one of the aims of the forthcoming EU COST Action 723 "The Role of the Upper Troposphere and Lower Stratosphere in Global change", is to improve sounding and remote sensing techniques of water vapour (see Another example of the planned work focusing on water vapour is proposed GEWEX (Global Energy an Water Cycle Experiment) Water Vapour Project (GVaP). See [SPARC 2000] and the references therein. The idea of LAUTLOS-WAVVAP comparison/validation experiment which brings together lightweight hygrometers developed in different research groups, which could be used as research-type radiosondes in UTLS region. These include the following instruments: Meteolabor Snow White hygrometer, NOAA frostpoint hygrometer, CAO Flash Lyman alpha hygrometer, Lindenberg FN sonde (a modification of Vaisala radiosonde) and the latest version of regular Vaisala radiosonde with humicap-polymer sensor. The experimental plan of LAUTLOS-WAVVAP is based on the regular launches of multi-sensor payloads from the Sodankylä meteorological balloon launch facility in January -February 2004. The aim is to study the effect of atmospheric conditions such as ambient temperature, water vapour or relative humidity, pressure or solar radiation for each participating hygrometer/radiosonde. Both night and daytime launches are planned. Apart from the intercomparison/validation experiment the campaign also have an scientific aim of studying the stratospheric PSC occurrence and their dependence on local temperature and the water vapour content. The campaign will be hosted by FMI Arctic Research Centre Sodankylä assisted by Vaisala Oyj and is a part of planned Finnish contribution to Cost 723 project. The campaign in Sodankylä is partly funded from LAPBIAT Facility, which belong to the EU program: Access to Research Infrastructures (see: References: SPARC Assessment of Upper Tropospheric and Stratospheric Water Vapor/SPARC Report No2/ December 2000

atmospheric water vapor Ozone measurement technology Climate variability Climate Climate change Arctic Atmosphere hygrometers
64. Simultaneous multi-instrumental measurements of temperatures, waves and PSCs in the polar winter atmosphere on both sides of the Scandinavian mountains

Waves play a major role for the momentum and energy transport in the middle atmosphere [Fritts and van Zandt, 1993] by modifying the local temperature field as well as the general circulation when the waves reach the saturation level and break [Holton, 1983; Fritts, 1984]. The MACWAVE rocket campaign is investigating the wave field in polar latitudes during summer and winter. To learn more about the horizontal structure of the wave field, it is important to measure at more than one station. For the monitoring of the vertical transport by the waves, measurements over a large height range are necessary. The combination of lidars, radiosondes and falling spheres will cover the region from the ground up to approximately 105 km. When comparing data, it is important to take into account the different measurement principles and integration times. The rocket will show small scale variations whereas the lidar permits a continuous monitoring of the temperature and wave situation

Atmospheric processes Ozone Geophysics Climate change Arctic Atmosphere
65. Ecological and Physiological Investigations about the Impact of UV Radiation (UVR) on the Succession of Benthic Primary Producers in Antarctica

The succession of macro- and microalgal communities in the Antarctic will be investigated in field experiments under various UV radiation (UVR) conditions and in the absence or presence of grazers. The observed differences in the succession process will be correlated to physiological traits of single species, especially in spores and germlings, which are the most vulnerable stages in their life histories. Photosynthetic activity of the different developmental stages will be measured routinely. Additionally we plan the determination of pigment composition, C:N ratios, content of UV protective pigments and of possible DNA damage. The experiments will start in spring, concomitant to the time of highest UVBR, due to the seasonal depletion of the ozone layer in the Antarctic region. Supplemental laboratory experiments will be conducted to determine the effects of UVR on spores and germlings of individual species. In addition to the above analyses, we plan to examine of UVR induced damage of cell fine structure and of the cytoskeleton. The results of both the field and laboratory experiments will allow us to predict the consequences of enhanced UVR for the diversity and stability of the algal community.

Biological effects Biology UV radiation Environmental management Climate change Biodiversity Arctic Ecosystems Seaweeds
66. Satellite validation for SAGE III (contribution to VINTERSOL/SOLVE-2)

In december 2001 the SAGE III experiment was successfully launched. The NASA science team of the SAGE III experiment has announced the Koldewey-Station in Ny-Aalesund as "anchor site" for validation, especially for such parameters as optical depth, aerosol extinction profiles and ozone profiles. Because of time coincidence NASA apprechiates support for the prospected validation activities for ENVISAT. This should be also considered as contribution to the NASA accepted project "Ground based Validation of SAGE III by the NDSC Primary Station at Ny-Ålesund, Spitsbergen" for SOLVE-2.

Ozone Climate variability SAGE III Climate change Arctic satellite validation
67. Arctic islands of genetic diversity or fragments of an ancient clone

Arctic islands of genetic diversity or fragments of an ancient clone. The history and future of Dryas octopetala in a changing environment.

Biological effects Climate change
68. Optical properties, structure, and thickness of sea ice in Kongsfjorden

Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.

UV radiation Geophysics Climate variability Climate remote sensing Sea ice Climate change Modelling Ice Oceanography Arctic Ice cores Atmosphere Ocean currents optical properties
69. The surface energy budget and its impact on superimposed ice formation (SEBISUP)

During the spring/summer transition, sea ice and snow properties change considerably in response to warming and the eventual reversal of temperature gradients within the snow and ice. Snow melt water percolates down towards the colder snow/ice interface, where it refreezes to form superimposed ice. On sea ice this process occurs probably longer and more intensive than on land, because throughout the summer the ice and underlying seawater is always colder than the snow. In Antarctica superimposed ice may actually form layers of some decimeters in thickness. The objective of this study is to investigate the main processes and boundary conditions for superimposed ice formation, in recognition of its importance for Antarctic sea ice, and its possible importance for Arctic sea ice in case of environmental changes due to future climate change. This will be performed by means of modeling as well as by combined measurements of the temporal evolution of snow and ice properties and the energy budget.

Snow and ice properties Sea ice Climate change Modelling Ice Ice sheets Arctic Ice cores Superimposed ice formation
70. Physiological response of growth, photosynthesis and nutrient uptake of marine macrophytes in a UV- and CO2 - enriched environment

As a result of the increasing atmospheric CO2 levels and other greenhose gases due to anthropogenic activities, global and water temperature is rising. The objectives of our project might be summarized as follows: I. To measure the activity of the enzymatic systems involved in carbon, nitrogen and phosphorus uptake (carbonic anhydrase, nitrate reductase and alkaline phosphatase) in selected macroalgae. To assess the optimal concentration of inorganic nitrogen and phosphorus for growth and photosynthesis. To study the total concentration of carbon and nitrogen metabolites in the macroalgae (proteins, total carbohydrates, and lipids) in order to define the possible existence of nutrient limitation. II. To simulate the conditions of climate change, represented as CO2 enrichment and increasing UV radiation, on the activity of carbon, nitrogen and phosphorus uptake mechanisms. III. To screen the activity of the enzymatic systems previously detailed in macroalgae from the Konjsfjord, in order to know their nutritional state.

Biological effects nutrient uptake UV radiation Climate change Macroalgae eutrophycation Ecosystems
71. Diversity and nitrogen fixation activity of cyanobacterial communities in terrestrial arctic ecosystems

Biological nitrogen fixation by cyanobacteria is a key process for productivity in terrestrial Arctic ecosystems and the activity is dependent of size and diversity of cyanobacterial populations. Changes in biodiversity after pertubations of different types of habitats simulating climatic changes or other antropogenic effects will be studied by molecular methods and correlated to variations of nitrogen fixation activity.

Biology nitrogen fixation cyanobacteria Climate change Biodiversity Arctic
72. KINGSCALM Active Layer Monitoring

Monitoring of the active layer near Ny Ålesund as part of the international monitoring scheme CALM (Circumpolar Active Layer Monitoring)

Active layer Climate variability Climate Climate change Permafrost
73. Diversity and changes on temporal and spatial scales of the cyanobacterial community in the high arctic environment of Spitsbergen, Svalbard Islands

The structure and role of the cyanobacterial communities that colonise bare soils and fix nitrogen in the arctic ecosystem will be studied. The planned activities will focus on the isolation, identification and characterisation of cyanobacteria from arctic habitats and on the changes of the cyanobacterial community along a transect from a retreating glacier front to a more stable habitat characterised by the presence of mature vegetation. For these purposes, a polyphasic approach encompassing microbiological, morphological and molecular techniques will be applied to environmental samples and isolated cultures. The obtained results will give new insights on the diversity and role of nitrogen fixing cyanobacteria in the arctic and, in more general terms, on ecosystem development under changing climatic conditions.

Biology nitrogen fixation cyanobacteria Soils Climate change Biodiversity Arctic Ecosystems

The objectives of this project is to study the effect of environmental stochasticity on the Svalbard reindeer population dynamics, nad further evaluate how this may affect reindeer-plant interactions.

Biological effects Biology Populations Climate variability Climate Climate change Terrestrial mammals Arctic Reindeer Temporal trends Ecosystems
75. Mass balance in Ny-Ålesund

Mass balance measurements with use of snow-radar on glaciers and snow i the Ny-Ålesund area.

Glaciers Climate change
76. Ice thickness in Kongsfjorden

Study of the energy exchange between atmosphere and ice sheets by means of measurment of solar radiation

UV radiation Climate change Ice sheets Atmosphere
77. Recruitment on hard bottom

Observation how UV-radiation affects recruitment on hard substrate in the upper sublitoral zone.

Shelf seas Biological effects Biology marine algae UV radiation Climate change Exposure Biodiversity Reproduction Temporal trends Ecosystems seaweeds
78. ASTAR 2000

ASTAR, Arctic Study of Tropospheric Aerosol and Radiation is a a joint German (AWI Potsdam) - Japanese (NIPR Tokyo) campaign with participation from NASA LaRC Hampton, VA (USA). In addition to AWI, NIPR, and NASA LaRC the following institutions contributed to the project: Hokkaido University (Japan), Nagoya University (Japan), Norwegian Polar Institute Tromsoe/ Longyearbyen (Norway), NILU Kjeller (Norway), MISU Stockholm (Sweden), NOAA-CMDL Boulder, CO (USA) and Max Planck Institute for Aeronomy Katlenburg-Lindau (Germany). The campaign is based on simultaneous airborne measurements from the German research aircraft POLAR 4 and ground-based measurements in Ny-Ålesund. The main goals of the project are - to measure aerosol parameters of climate relevance, like extinction coefficient, absoprtion coefficients and phase function. - to create an Arctic Aerosol Data Set for climate impact investigation by using the regional climate model HIRHAM. - to carry out comparison measurements with the SAGE II (Stratospheric Aerosol and Gas Experiment) and the ground based Raman-Lidar.

Radiation Atmospheric processes Phase function Absoprtion coefficients HIRAM Climate variability Climate Climate change Aerosol Arctic Raman-Lidar Atmosphere Extinction coefficient SAGE II
79. SOLVE: SAGE III Ozone Loss and Validation Experiment

In preparation to the launch of the SAGE III experiment in March 2001, NASA and the European Union performed the SOLVE / THESEO-2000 campaign, which had three components: (i) an aircraft campaign using the NASA DC-8 and ER-2 airplanes out of Kiruna/Sweden, (ii) launches of large stratospheric research balloons from Kiruna, (iii) validation excercises for the commissioning phase of SAGE III. The German Arctic research station Koldewey in Ny-Ålesund/Spitsbergen contributes to (i), (ii), and (iii) by performing measurements of stratospheric components like ozone, trace gases, aerosols (PSCs), temperature and winds. The measurement results were transmitted quasi online to the flight planning center in Kiruna, in order to allow a better directing of the air plane flights. In addition the Koldewey-Station has been designated a validation anchor site for the SAGE III validation. The activities are organized within a NASA accepted proposal of ground-based validation support by the NDSC Primary Station at Ny-Ålesund, Spitsbergen and by a SAGE III validation working group for Ny-Ålesund. The main observation periods are from December 1999 to March 2000.

Atmospheric processes Ozone UV radiation trace gases Climate variability Climate SAGE III Climate change aerosol THESEO-2000 PSCs Atmosphere satellite validation
80. BOS: High altitude ozone observations with a Balloon-borne Optical Sensor

In order to get detailed vertical ozone profiles above the range of standard electrochemical ozonesondes (typically 35 km), a radiosonde together with an optical ozonesensor is launchend with a special plastic foliage balloon. The balloon payload consists of a digital radiosonde (DFM 90) using GPS for altitude measurements and a two channel filter spectrometer (optical sensor) to measure the vertical ozone distribution up to more than 40 km altitude. The ozone profiles obtained by the optical sensors will be compared with ground-based microwave and lidar ozone observations as well as with the standard balloon-borne ozone measurements with electrochemical ozone sensors.

optical ozonesensor Atmospheric processes Ozone UV radiation Climate variability stratosphere Climate ozone profile Climate change ozonesonde Arctic Atmosphere balloon-borne troposphere