The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 148 Next
41. NOx and SO2 samplings - Corbel station

This technological program aims to get a better view of the Corbel site quality (78 54 N, 12 07 E, Svalbard close to Ny Alesunsd) for atmospheric chemistry. Nox and SO2 samplers are deployed on 16 places on a 4 km2 area around the Station (79°N, Svalbard), protected from snowscooters activity. The influence of Ny Alesund village is also studied. Programme 2004 April 2004 : poles installation and samplers deployment on the 16 stations; analysis will be made by CNR.

Atmospheric processes Long-range transport Climate Pollution sources Contaminant transport Climate change Emissions Arctic Local pollution Atmosphere
42. Chlorofluorocarbons, Hydrogenated Halocarbons and Degradation Products of the Hydrogenated Halocarbons in the Arctic Environment

Work program: Grab air samples will be collected in sampling sites not influenced by local emission sources for the determination of chlorofluorocarbons and of hydrogenated halocarbons. A 15 days sampling campaign is scheduled. Samples will be analysed in our Institution by using the analytical methodology here described and results obtained will be evaluated and compared with data obtained, by using the same analytical methodology, analysing air samples collected in other remote and semi remote sites. For the analysis of the hydrogenated halocarbon degradation products snow and water samples will be collected as well, according to the different season of the year. The collected samples will be then derivatized and analysed in our Institution for the evaluation of the presence of such compounds in remote areas.

Atmospheric processes Ozone Climate Climate change Emissions Atmosphere
43. Cloud Effects on UV Irradiance Measurements (CEUVIM)

The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.

Atmospheric processes Ozone UV solar radiation UV radiation Climate change Atmosphere Clouds effects
44. Hydrology and water currents in the inner part of Kongsfjord in front of Kongsbreen Glacier

The aim of this project is to study the physical oceanography of the sea in the area where Kongsbreen glacier get in touch with the sea in the inner part of Kongsfjord. In particular the project aims:  to characterise temperature and salinity of water masses in the inner part of Kongsfjord close to Kongsbreen Glacier  to characterise major fresh water outflow from Kongsbreen glaciers to the sea in the inner part of the fiord  to collect time series if seawater currents in-out from the inner part, temperature and salinity patterns for one year from summer 2001 to summer 2002.  to collect a one year time series of sea level changes by an automatic self recording depth gauges deployed close to the base.

Glaciers Kongsfjord Hydrography Water currents Hydrology sea level change salinity Sea ice Climate change Ice Oceanography Arctic temperature Ocean currents Kongsbreen
45. ENVISAT AO ID 130: Global study of inorganic chlorine and fluorine loading in the Earth’s atmosphere, based on correlative measurements by ENVISAT-1 and at 10 NDSC sites

The project aims at producing an ENVISAT-1 mission-long monitoring of the inorganic chlorine (Cly) and fluorine (Fy) loading in the Earth’s middle atmosphere, based on FTIR vertical column abundance measurements of the key related species HCl, ClONO2, HF and COF2 at 10 ground-based NDSC sites distributed worldwide. These Cly and Fy inventories will be completed with ClO and OClO measurements expected as Level-2 products from ENVISAT-1. The column abundances of the source gases CFC-12 and HCFC-22 will be used to place the stratospheric Cly and Fy evolution in perspective with the more complete sets of organic chlorinated and fluorinated compounds measured at the ground by the in situ networks NOAA-CMDL and AGAGE. The assimilation of the retrieved geophysical data bases will be performed through 3-D model calculations incorporating physical, chemical and transport characteristics of the global atmosphere.

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
46. ENVISAT AO - ID:158: CINAMON: Characterisation, INterpretation, Application, and Maturation of key Ozone-related ENVISAT-1 level-2 products, using correlative observations associated with the NDSC

The present project aims at the geophysical validation, from pole to pole and on the long term, of key ozone-related level-2 products (O3, NO2, BrO, OClO, and ClO) from GOMOS, MIPAS and SCIAMACHY onboard ENVISAT-1, and at a contribution to the maturation of the related level-1b-to-2 data processors. Application data processing will be used to convert level-2 data into a more suitable format for validation and scientific end-users. The respective performances of the ENVISAT data products, and their sensitivity to various relevant parameters, will be investigated from the Arctic to the Antarctic, over a variety of geophysical conditions. The impact of these performances on specific atmospheric chemistry studies will be emphasised. The pseudo-global investigations will rely on correlative studies of ENVISAT data with high-quality ground-based, in situ and balloon observations associated with the Network for the Detection of Stratospheric Change (NDSC).

Atmospheric processes Sources Ozone Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
47. ENVISAT AO - ID:126: Validation of ENVISAT-1 level-2 products related to lower atmosphere O3 and NOy chemistry by an FTIR

The project will provide a long-term, pseudo-global validation support to the ENVISAT-1 atmospheric measurements, based on mutually consistent high-quality solar and lunar observations from FTIR spectrometers operated at primary and a number of complementary NDSC stations. The validation is limited to a number of target species, most of which are primary NRT or OL level-2 products of the mission, with focus on NOy components: O3, NO2, NO, N2O, HNO3, HNO4, H2CO, CO and CH4. Synergistic use will be made of column and profile data from MIPAS, GOMOS and SCIAMACHY. The ground network will deliver mean vertical column abundances for all target species with NDSC-type quality, and height profile information for some target gases as secondary products to the PI's home institute, where the correlative analyses with the ENVISAT-1 products will be done. Asynoptic mapping tools will support the validation efforts.

Atmospheric processes Sources Ozone FTIR Mapping Climate variability NDSC Spatial trends Pollution sources Climate change Emissions Atmosphere Temporal trends satellite validation
48. Radiometric studies of natural surfaces at Ny-Aalesund by means of field survey and multispectral satellite data

The main goal of this research project is to complete the collection of snow/ice field data and to improve the organization of snow/ice spectral signatures, and structural data, along with ancillary information in the existing archive.

Geology Mapping radiometric studies remote-sensing Spatial trends Climate change Ice Arctic Temporal trends spectral reflectance
49. Arctic-subarctic Ocean Flux-Array for European Climate: West

-To measure the variability of the dense water and freshwater fluxes between the Arctic Ocean and the North Atlantic in the critical region off Southeast Greenland with a view to understanding and predicting their response to climate forcing -To construct an autonomous, bottom mounted profiling device capable of taking key water profile measurements.

Marine Technology Climate variability Climate change Ocean currents Temporal trends
50. ESAC I and II: Experimental Studies of Atmospheric Changes, 1st and 2nd phase

The main objectives of ESAC II are the following: (1) Extend and improve the important existing Belgian contribution in atmospheric research started in the 50s, recognized internationally. (2) Investigate the chemistry of the atmosphere, to detect and understand its evolution, mainly with experimental means. Special attention will be paid to the evolution of the ozone layer and chemical species and processes with an impact on climate changes. (3) Support the Belgian policies and decisions regarding the Amendments to: - the Montreal Protocol on Substances that deplete the Ozone Layer; - the Kyoto Protocol on Greenhouse Gases (GHG) emissions.

Atmospheric processes Sources Ozone UV radiation Climate variability Belgian contribution in atmospheric research Spatial trends Pollution sources Montreal & Kyoto Protocols Climate change Modelling Emissions Atmosphere Temporal trends
51. Greenland Arctic Shelf Ice and Climate Experiment

-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores

Climate variability Climate Sea ice Environmental management Climate change Modelling Ice Arctic Ice cores Temporal trends
52. EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology

EARLINET will establish a quantitative comprehensive statistical database of the horizontal, vertical, and temporal distribution of aerosols on a continental scale. The goal is to provide aerosol data with unbiased sampling, for important selected processes, and air-mass history, together with comprehensive analyses of these data. The objectives will be reached by implementing a network of 21 stations distributed over most of Europe, using advanced quantitative laser remote sensing to directly measure the vertical distribution of aerosols, supported by a suite of more conventional observations. Special care will be taken to assure data quality, including intercomparisons at instrument and evaluation levels. A major part of the measurements will be performed according to a fixed schedule to provide an unbiased statistically significant data set. Additional measurements will be performed to specifically address important processes that are localised either in space or time. Back-trajectories derived from operational weather prediction models will be used to characterise the history of the observed air parcels, accounting explicitly for the vertical distribution.

Atmospheric processes Climate variability Spatial trends Climate change Data management Atmosphere Temporal trends
53. SOGE: System for Observation of halogenated Greenhouse gases in Europe

SOGE is an integrated system for observation of halogenated greenhouse gases in Europe. There are two objectives: (1) To develop a new cost-effective long-term European observation system for halocarbons. The results will be in support of the Kyoto and the Montreal protocols,in assessing the compliance of European regions with the protocol requirements. In particular the observation system will be set up to: - detect trends in the concentrations of greenhouse active and ozone-destroying halocarbons; - verify reported emissions and validate emission inventories; - develop observational capacity for all halocarbons included in the Kyoto protocol (PFC, SF6) for which this is presently not yet existing; - develop a strategy for a cost-effective long-term observation system for halocarbons in Europe. (2) To predict and assess impacts of the halocarbons on the climate and on the ozone layer. This implies extensive exploitation of existing data. The impact assessment will be aimed at providing guidance for development of the Kyoto protocol and to the further development of the Montreal protocol mendments, by: - modelling impacts of halocarbons on radiative forcing and their relative importance for climate change; - modelling impacts of emissions of CFCs and HCFCs on the ozone layer.

Atmospheric processes Sources Ozone Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends
54. QUILT: Quantification and Interpretation of Long-Term UV-Vis Observations of the Stratosphere

The aim of QUILT is to optimise the exploitation of the existing European UV-visible monitoring systems by which O3 and the related free radicals NO2, BrO and OClO can be measured. These monitoring systems include ground-based, balloon and satellite observations. QUILT is providing an assessment of the chemical ozone loss over the last decade and through 2000-2003. This is achieved through analysis improvements, consolidation of existing datasets and near real time integrations with chemical transport models.

Atmospheric processes Sources Ozone Stratospheric Ozone Montreal Protocol Climate variability Spatial trends Pollution sources UV-Visible Remote Sensing Climate change Modelling Emissions Atmosphere Temporal trends Satellite Validation
55. FREETEX (part of TROTREP): The Free troposphere experiment

The goals of this experiment are to map out the chemical changes in the free troposphere as the atmosphere transitions from winter to spring. It is hoped to begin to understand the chemical conditions that influence the lifetime of ozone and understand more about the productivity of this region of the atmosphere with respect to the in-situ production of ozone. How the free troposphere responds to changing levels of pollution could be critical to the development of future abatement strategies.

Atmospheric processes Sources Ozone Mapping Climate variability Pollution sources Climate change Emissions Atmosphere
56. COSE: Compilation of atmospheric Observations in support of Satellite measurements over Europe

The overall objective of COSE is to provide the Earth Observation (EO) user community with a validated, consistent and well-documented data set of mainly stratospheric constituent columns and/or profiles, by co-ordination of ground-based observations at existing stations in Europe. The data set builds on past and ongoing time series, and will be archived in a dedicated database for immediate and future exploitation, e.g., satellite validation activities, data assimilation and scientific studies. Active participation of some representative EO customers will assure that the delivered data sets come up to their requirements.

Atmospheric processes Sources Ozone network observations database Climate variability Atmospheric chemistry monitoring Spatial trends Pollution sources Climate change Modelling Emissions data documentation and user exploitation Data management Atmosphere Temporal trends satellite validation
57. Global Climate Change, Faunal Invasion And Succession In High arctic Ecosystems : Implications For Ecosystem Function.

Prof. I.D. Hodkinson Dr. S.J. Coulson School of Biological & Earth Sciences, Liverpool John Moores University, Byrom St., Liverpool L3 3AF, UK (Contact details: Tel. 0151 2312030 Fax. 0151 207 3224 email; Prof. N.R. Webb NERC Centre for Ecology & Hydrology, Winfrith Technology Centre, Dorchester, Dorset, DT2 8ZD, (Contact details: email Objectives and Hypotheses Our main objectives are to:  describe, measure and model patterns and rates of invertebrate community development and succession following glacial retreat in the high Arctic using known chronosequences.  cross-relate rates of community change to known climatic shifts.  relate invertebrate community development to rates of key ecological processes such as decomposition of organic matter.  evaluate the potential for more southerly species successfully to invade existing Arctic invertebrate communities.  develop descriptive and predictive models of community development under conditions of climatic amelioration. We are testing the following hypotheses:  that dispersal of particular functional groups of invertebrates in response to climate warming is a rate-limiting factor for invertebrate succession and community development in the high Arctic.  that invertebrate community development in response to climatic warming is deterministic and directional, and therefore predictable.  that the magnitude and stability of key ecosystem processes, such as decomposition, in the high Arctic are linked to biotic complexity, which can be suitably characterised by the invertebrate community composition.  that natural succession provides a useful model for predicting rates of invasion by colonising species following climatic amelioration. Study sites Studies on two contrasting but complementary chronosequences on west Spitsbergen commenced in June 2000, an oligotrophic succession on t he glacial foreland of Midtre Lovénbre and a relatively eutrophic succession on Lovénøyene, a series of islands in Kongsfjord. A 1.5 km transect was established, extending from the foot of the Midtre Lovénbre to the terminal moraines and across the sandur. Seven equally spaced sampling sites (approx 20 x 40 m) were established at right angles to the main transect line). Each site was chosen to represent the most mature vegetation type present at each point. By contrast, each Lovénøy was viewed as a separate sample site. The chronology of glacial 'retreat' was established from vertical and oblique aerial and ground based photographs held by the Norsk Polarinstitutt Archive, Tromsø, from historical records and ground photographs and, for the oldest site, by radiocarbon dating of the soil. Results Ages of sites: The ages of the sites from the Midtre Lovénbre sequence vary between 2 years (site one) to 1900 (site seven), while the islands vary between 100 (Leirholmen) to 1800 (Storholmen). Plant community description and soil formation A detailed description has been made in the changes in the plant community (18 taxa) from site 1-7 on the Lovénbre - from unconsolidated parent to almost 100% ground cover. The presence, abundance and dynamics of each species have been described. Species have been characterised as early, mid or late successional. Parallel trends occur in soil characteristics including increasing depth, increasing organic matter and water content, decreasing clast size and a lowering of pH. Animal community description The soil fauna comprise primarily Collembola, mites, Enchytraeidae and chironomid larvae. Herbivores (one aphid and sawfly larvae) are few but hymenopteran parasitoids and predators (spiders and gamasid mites) are abundant. The distribution patterns of species and their abundances have been quantified for both the Lovénbre and Lovénøyene chronosequnces. The very first colonisers of bare moraines are Linyphiid spider species (predators). Other early soil colonisers are generally the surface active species such as the collembolan Isotoma anglicana. The poorest colonisers are the deep soil dwelling species. Experiments are thus underway examining wind blown dispersal and survival on seawater. A cellular automaton model, using absolute density and pitfall trap is being used to simulate diffusion dispersal of soil animals. A set of unusual weather conditions in late July produced a mass immigration of a small moth Plutella xylostella into Svalbard. This chance event has allowed us to track in detail the movement of associated weather systems and to reconstruct the direction and source of immigrants. Such events are rare but may become increasingly frequent as climate changes, opening a closed gateway for animals from further south to move into the Arctic. Continuing work Current visit (late July/early August) is aimed at collecting supporting information on the plant cover and microhabitat characteristics for manuscripts in preparation.

Climate change
58. UFTIR: Time Series of Upper Free Troposphere observations from a European ground-based FTIR network

The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.

Atmospheric processes Sources Ozone FTIR Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends profile inversions
59. Climate Change and Competitive Interactions

The effects of climate change in a dynamic competitive interaction between two or more species can be bought about either as direct responses of species to change or indirectly through effects on competing species. Intertidal barnacles are ideal model organisms to test these alternative causal mechanisms, being easily censussed and directly competing for space. Single- and multi- species models will be developed for barnacles in SW England to determine whether direct or indirect mechanisms better predict responses to change. The models will include functions for space-limitation, environmental influence and, in the latter models, functions for interspecific competition. Historical data from a network of sites collected over a 40-year period will be used to develop and test the models.

Climate variability Spatial trends Climate change Biodiversity Temporal trends Ecosystems
60. Phosphorus Cycling in the Cryosphere

This project will construct detailed phosphorus budgets for polar catchments occupied by glaciers and freshwater systems undergoing rapid response to climate warming. These are Midre Lovenbreen, Svalbard; Jebsen Creek, Signy Island (maritime Antarctic) and Storglaciaren, northern Sweden. The relationship between meltwater production, pathway and phosphorus liberation from glacial sediments will be examined closely. Emphasis will be given to phosphorus sorption dynamics in turbid glacial streams and their receiving waters (fjords and lakes).

Glaciers Catchment studies Phosphorus Climate change Arctic Geochemistry Ecosystems