Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 138 Next
41. Monitoring of pollutants in fish and sediment

Monitoring aims to follow certain pollutant concentrations and their changes in fish tissue and sediment. Both inland lakes, one river and coastal areas are sampled. Lapland monitoring site is Lake Inarijärvi. Project is managed by Finnish Environment Institute (SYKE).

Biological effects Biology tissue pollutant Heavy metals Fish sediment. monitoring Persistent organic pollutants (POPs) Sediments Ecosystems
42. Overview of the State of the Arctic Hydrometeorological Observation Networks

In the context of the tasks SAON SG steering group, the topology of the Arctic hydrometeorological observation network can be presented in the following concise form: 1. Agrometeorological; 2. Actinometric; 3. Aerological (radiosounding); 4. Water balance; 5. Hydrological on rivers; 6. Hydrometeorological on lakes; 7. Glaciological; 8. Meteorological; 9. Marine hydrometeorological (in the coastal zone, river estuaries, open areas including marine vessel and expeditionary); 10. Avalanche; 11. Ozone measuring; 12. Heat balance; 13. Atmospheric electricity; 14. Water, soil and snow surface evaporation; 15. Chemical composition of water and air. Observation network data are operationally transferred to Roshydromet’s data telecommunication network except for those indicated in items 4, 7,12-15. The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones. Meteorological observations are considered as the main type of observations. To establish a common database and control timely and complete collection and distribution of information, a catalog of meteorological bulletins is being created to be the plan of hydrometeorological information transfer from the sources to Roshydromet’s data telecommunication network to distribute among information recipients The catalog of meteorological observations is maintained by State Institution “Hydrometeorological Center” and State Institution “Main Radio-Meterological Center”. Electronic version of the catalogs of meteorological bulletins is maintained by State Institution “Main Radio-Meterological Center” and located on the Internet site http://grmc.mecom.ru. The catalog of meteorological bulletins contains the following information: − Name of Roshydromet’s subordinate Federal State Institution and observation point to input data into the automated data system; − shortened title of the hydrometeorological bulletin in proper format; − observation data coded form; − hours of observation; − data transfer check time; − number of observation points taking part in one bulletin; − lists of five-digit indices for observation points. Changes are entered into the catalogs of meteorological bulletins quarterly. WMO’s WWW is considered as the main foreign information consumer. The lists of WMO correspondent stations are given in WMO publications # 9, vol. C, part 1 (Catalog of Meteorological Observations), vol. A (Observation Stations). 2. SAON is expected to stimulate the process of improving configuration and completeness of the circumpolar region monitoring system as a potential tool for international consolidation of the opportunities available in the functioning of observation networks in order to improve national standards quality and ensure more complete compliance of the Arctic research strategies proposed to socioeconomic needs and interests of Arctic countries 3. The catalog of points and main observations is given in Table 1 (see Fig. 1). The maximum development of the Russian hydrometeorological observations in the Arctic was reached in early 1980s, when information was received from 110 stations. In subsequent years, the number of stations decreased more than twice (Fig. 2). The current level of observations is determined by the functioning of a network consisting of 49 points two of which are automatic weather stations. Three points are temporarily removed from operation. In short term, 8 automatic stations are expected to be opened; while in medium and long term, the number of manned observation points will increase up to 52-54, and the number of automatic ones – up to 20-25. For the manned network, the meteorological program includes a set of eight-hour observations of: atmosphere pressure, wind parameters, air and soil temperature, relative humidity, weather phenomena, cloud height, visual range, precipitation, while for automatic weather stations – a set of reduced 4-hour observations. The marine hydrometeorological program includes coastal observation of temperature, water salinity (density), sea-level variations, heave, ice distribution (and thickness) as well as meteorological parameters under the change of observation conditions from hourly to ten-day observations. The river hydrological program is quite similar to the marine one. It does not include observations of water density, however, they can be included for the stations having a special status, measurement of water discharge, alluvia and chemical composition of water. The programs will include hourly and ten-day observations. The aerological program will include 1-2 –hour measurements of: atmosphere pressure and wind parameters on selected isobaric surfaces. Actinometric observations include measurement of 5 components of atmosphere radiation balance in case of the full program and measurement of total radiation under a reduced program. Network type: The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones.

Oceanography Atmosphere Ecosystems
43. Institute of Oceanography and Marine Geophysics (OGS)

OGS conducts scientific activities within the fields of Earth Sciences and Polar Science in the Arctic, primarily but not exclusively, in the sea with the vessel OGS-Explora. Current OGS activities in the Arctic include a) Pergamon, EU COST Action: European network for study and long-term monitoring of permafrost, gas hydrates and release of methane in the Arctic and climate change impacts; b) IBCAO (International Bathymetric Chart of the Arctic Ocean) to develop a digital bathymetric database to the north of 64°. OGS is the Editorial Board and provides multibeam data; c) Research activities in the frame of PNRA (Italian Antarctic and Arctic National Research Programme) through several projects devoted to paleoceanographic study of the thermohaline circulation on the Eirik Drift (Greenland and study of paleoclimate in the Barents Sea using geological and geophysical data from the International Polar Year EGLACOM cruise of OGS Explora. CORIBAR international project (IT, DE, ES, N, DK) will provided in the next 1-2 years new data for the last item, through MEBO drilling on board RV Maria S. Merian.

Oceanography Ecosystems
44. Hydrometric Observations

To provide for the collection, interpretation, and dissemination of surface water quantity data and information and services that are vital to meet a wide range of water management, engineering and environmental needs across Canada. Main gaps: The current hydrometric network is deficient in terms of understanding the regional hydrology and river regimes across Canada. The map below integrates Environment Canada’s two key frameworks: the National Drainage Area Framework with the National Terrestrial Ecological Framework to identify network deficiencies. In order to have sufficient information there needs to be at least one active hydrometric station measuring natural flow in each corresponding ecodistrict within a sub-sub drainage area. This strategy ensures that there will be sufficient information to understand the hydrological processes and the interrelationships with the landscape. This information is essential for research and enhancing our predictive capabilities and data transfer. As the map shows, areas of sufficiency are concentrated in the southern, more populated regions of the country. Network sufficiency declines to the north and northeast, with great extents of northern Canada having no coverage at all. Network type: in-situ.water level and streamflow monitoring stations

Oceanography Atmosphere Human health Ecosystems
45. Arctic Avian Monitoring Network

The main objective of the Arctic Avian Monitoring Network is to characterize the occurrence of birds in the Arctic to support regulatory responsibilities and conservation of birds and the biodiversity on which they depend. Temporal and spatial changes can be used to indicate changes in ecosystems that might otherwise be difficult to detect (e.g. marine areas) and can also be used to model predicted changes due to human activity. Main gaps: Large gaps both spatially and temporally. Many datasets cover short periods. Some species groups not well covered (e.g. landbirds and shorebirds) Network type: Network consists of programs divided into three species themes that combine common aspects of biology and human use: Waterfowl: e.g. ducks geese and swans • centered on aerial surveys of high density breeding areas and following non-breeding birds using satellite telemetry Seabirds: e.g. gulls, terns and auks • centered on surveys at breeding colonies and of birds at sea (either by direct observation or through the use of data loggers) Shorebirds: e.g. sandpipers, plovers and phalaropes • focused on broad-scale, stratified sampling of terrestrial areas and aerial surveys of non-marine habitats

Oceanography Human health Ecosystems
46. ArcticNet Network of Excellence Observing Program

ArcticNet brings together scientists and managers in the natural, human health and social sciences with their partners in Inuit organizations, northern communities, government and industry to help Canadians face the impacts and opportunities of climate change and globalization in the Arctic. Over 110 ArcticNet researchers and 400 graduate students, postdoctoral fellows, research associates and technicians from 28 Canadian universities and 8 federal departments collaborate on 28 research projects with over 150 partner organizations from 15 countries. The major objectives of the Network are: • Build synergy among existing Centres of Excellence in the natural, human health and social Arctic sciences. • Involve northerners, government and industry in the steering of the Network and scientific process through bilateral exchange of knowledge, training and technology. • Increase and update the observational basis needed to address the ecosystem-level questions raised by climate change and globalization in the Arctic. • Provide academic researchers and their national and international collaborators with stable access to the coastal Canadian Arctic. • Consolidate national and international collaborations in the study of the Canadian Arctic. • Contribute to the training of the next generation of experts, from north and south, needed to study, model and ensure the stewardship of the changing Canadian Arctic. • Translate our growing understanding of the changing Arctic into regional impact assessments, national policies and adaptation strategies. Main gaps: [Not specified] Network type: Thematical observations:Yes Field stations: Yes on Land (see CEN sheet) and Marine (CCGS Amundsen) Community based observations: Yes Coordination: Yes

Oceanography Atmosphere Human health Ecosystems
47. Hydrological observation network for land water bodies

Monitoring of the state of land water bodies and river estuaries Network type: Data on the network for land water bodies and river estuaries covers the region of the Russian Arctic limited with its water resource boundaries close to the AMAP boundaries. Within these boundaries, when the network extension was the greatest in the 1980s, there were 288 points including 199 basic ones (97 of which are reference ones) and 89 auxiliary and departmental ones. Actually in the Russian Arctic, there are 182 points including 137 basic ones (88 of which are reference ones) and 52 auxiliary and departmental ones and 12 of which function under special estuarine programs

48. Network of hydrological stations located on rivers and channels

Monitoring and forecast of the state of water streams and hydrological hazards, assessment of water resources. Main gaps: Initial data before 1984 have not been digitized.

49. Umhverfisstofnun ‐ The Environment Agency of Iceland (Umhverfisstofnun)

The Environment Agency operates under the direction of the Ministry for the Environment. It's role is to promote the protection as well as sustainable use of Iceland’s natural resources, as well as public welfare by helping to ensure a healthy environment, and safe consumer goods. Areas of operation: 1. Information and advice for the public, businesses and regulatory authorities 2. Monitoring of environmental quality 3. Evaluation of environmental impact assessment and development plans 4. Operation supervision, inspection, operating permits, etc. 5. Assessment of conservation effects and registration of unique nature 6. Management and supervision of designated protected areas 7. Wildlife management and conservation 8. Eco‐labeling 9. Labeling and handling of toxic as well as other hazardous substances 10. Coordination of health and safety in public places 11. Coordination of local environmental and health inspectorates 12. Genetically modified organisms (GMO) Main gaps: Metadata archives and metadata availability Network type: ‐ Thematic observations ‐ Community based observations ‐ Coordination

Geology Oceanography Atmosphere Ecosystems
50. Centre d'études nordiques (CEN) Observing Program (CEN)

The Centre for Northern Studies (www.cen.ulaval.ca; CEN: Centre d’études nordiques) is an interuniversity centre of excellence for research involving Université Laval, Université du Québec à Rimouski and the Centre Eau, Terre et Environnement de l'Institut national de la recherche scientifique (INRS). Members also come from the following affiliations: Université de Montréal, Université du Québec à Chicoutimi, à Montréal and à Trois-Rivières, Université de Sherbrooke, and the College François-Xavier Garneau. The CEN is multidisciplinary, bringing together over forty researchers including biologists, geographers, geologists, engineers, archaeologists, and landscape management specialists. The CEN community also counts two hundred graduate students, postdoctoral fellows, and employees. CEN’s mission is to contribute to the sustainable development of northern regions by way of an improved understanding of environmental change. CEN researchers analyze the evolution of northern environments in the context of climate warming and accelerated socio-economic change and train highly qualified personnel in the analysis and management of cold region ecosystems and geosystems. In partnership with government, industry and northern communities, CEN plays a pivotal role in environmental stewardship and development of the circumpolar North. CEN research activities are focused on three themes: 1 -Structure and function of northern continental environments. 2 -Evolution of northern environments in the context of global change. 3-Evaluation of the risks associated with environmental change and development of adaptation strategies. In 2009, CEN organised an international workshop with the European SAON network SCANNET and also partners throughout Canada. The workshop culminated in the formal incorporation of CEN stations within SCANNET (http://www.scannet.nu/). Main gaps: [Not specified] Network type: CEN operates the CEN Network, an extensive network of meteorological and field stations that were established in consultation with northern communities. The CEN Network comprises over 75 climate and soil monitoring stations and eight field stations distributed across a 4000 km North-South gradient from boreal forest to the High Arctic. The eight field stations are situated at the following sites: Radisson, Whapmagoostui- Kuujjuarapik, Umiujaq, Lac à l’Eau Claire (in the proposed new park Tursujuq), Boniface River, Salluit, and Bylot and Ward Hunt Islands, which are part of two National Parks in Nunavut. The main field station at the heart of the CEN Network is at Whapmagoostui-Kuujjuarapik.

Oceanography Atmosphere Ecosystems
51. Hydrological issues of the glacierized Waldemar River catchment

Recently observed changes in glacierized areas significantly influences on water circulation features in those regions. Project assumes hydrological research in Waldemar River catchment as the example of the High-Arctic glacierized basin. Those investigations began in late 1970’s. From that date substantial changes in catchment characteristic are observed (e.g. decrease degree of glaciation). Glacier-fed river characteristics are well recognized all over the globe. But still there is a need to define how contemporary deglaciation processes affects the water circulation cycle. Basics hydrological features in Waldemar River Catchment are continuously investigated since 1995. In the close feature, a HIWRC programme will be expanded to include research of major glaciohydrological processes in catchment (e.g. internal glacial drainage and it contribution to total outflow). Study assume measurements in a few river points – both in close vicinity of glacier (with no other than glacial water source tributaries) and in lowest part of catchment (with periglacial tributaries).

Soils
52. Nicolaus Copernicus University Polar Station, Spitsbergen (NCU PS)

The Polar Station of the University of Nicolaus Copernicus is located in the western part of the Oscar II Land, in the northern part of the coastal Kaffiøyra Lowland which is closed by the Forlandsundet from the west. The undertaken research included almost all components of the geographical environment. Scientific programs put pressure on research in glaciology, glacial geomorphology, permafrost and periglacial processes, as well as climatologic and botanical studies. Since 1995 glaciological research and the studies of permafrost of various ground types and their seasonal thawing, as well as meteorological observations have been the major issues on the research agenda. Glaciers pose the dominating feature of the Kaffiøyra region. Since the 19th century their area has decreased by about 30%. Thus, one of the main scientific issues studied there is the course and the reasons for the change in the glaciers’ range. This can be achieved by studying mass balance of the glaciers. Presently, mass balance of four glaciers is studied: the Waldemarbreen, the Irenebreen, the Elisebreen and the Aavatsmarkbreen. 39 The research includes both the summer balance (ablation and outflow from the glaciers) and the winter snow accumulation. The detailed research plans also refer to two large glaciers which end up in the sea. Those are the Aavatsmarkbreen in the north and the Dahlbreen in the south of the Kaffiøyra. Currently, subaquatic glacial relief of the bays in the Forlandsundet region is under scrupulous investigation. The results of the research can be obtained from the station’s website (www.stacja.arktyka.com), from the publications by the World Glaciological Monitoring Service (WGMS- IAHS), as well as the website of the Circumpolar Active Layer Monitoring (CALM- IPA). The research carried out in the N.Copernicus University Polar Station has enabled numerous scientists of most specialties of the Earth sciences (glaciology, climatology, hydrology, geomorphology, pedology and botany) to collect material for numerous papers, including master and doctoral theses. Scientific attractiveness of the Kaffiøyra’s geoecosystem has been appreciated by scientists from various scientific centres in Poland and elsewhere, who take part in interdisciplinary expeditions organized every year. The most Polish polar research in the north-west Spitsbergen is based on the N.Copernicus University Polar Station Once the station has had an extension addend, it can host 10-15 people at any one time. The new section of the station is 32 sq. m downstairs and 24 sq. m upstairs. This includes a study, a workshop, a bedroom as well as two bedroom entresols. The extension is connected with the old section of the station, which includes a living room and a bedroom, but there is also a separate entrance to the new part of the station. Additionally, the station gained extra storage floor, a laboratory, a bathroom, as well as a garage to keep boats, snowmobiles and engines. All together the station now has about 100 sq. m. The station is used 3 to 4 months annually, but it is possible to stay there for as long as a whole year. It is equipped with necessary technical facilities, motor-generators, solar panels, motorboats and snowmobiles. More important measurement equipment includes: a weather station with the basic measuring instruments (the measurements conducted since 1975); automatic weather stations (with the measurements taken at any intervals); limnigraphs and loggers installed in the selected watercourses (measurements of water levels, flow rates and the selected physicochemical features of water since 1975); a system of ablation poles installed on the glaciers; ice drills; loggers for measuring ground temperatures and ice temperatures, and others. The extension of the station in 2007 enabled larger groups of scientists to work and conduct research. The fact that both the living and laboratory space has been enlarged is especially important, as the station is often visited by scientists from all over the world. As a result, the extension will make it possible to intensify current international contacts, as well as start new co-operation projects in the Kaffiøyra region.

Soils Environmental management Atmosphere
53. Geographical environment conditions and its changes in the polar and subpolar regions (GeograPOLARUMCSphical environment conditions and its changes in the polar and subpolar regions ())

The study includes comprehensive study of the geographical environment in the area of Polar Station of Maria Curie-Skłodowska University in Calypsobyen (NW part of Wedel Jarlsberg Land, Svalbard). Currently, studies have been carried out within research projects: - Dynamics of matter circulation in the polar catchment are a subject to deglaciation processes (Scottelva, Spitsbergen) (DYNACAT) - Morphogenetic and morphodynamics conditions of development of the coast of the NW part of Wedel Jarlsberg Land (Spitsbergen) in the late Vistulian and Holocene (MORCOAST) - Mechanisms of fluvial transport and sediment supply to Arctic river channels with various hydrological regimes (SW Spitsbergen) (ARCTFLUX)

Geology Soils Environmental management
54. Dynamics of matter circulation in the polar catchment subject to the deglaciation processes (Scottelva, Spitsbergen) (DYNACAT)

The project aims at analysing dynamics of matter circulation in the polar catchment under the deglaciation processes and its effect on topoclimatic and microclimatic diversification of the area in question. Equally important are: 1) the dynamics of periglacial and 2) hydrological processes and changes in the local environment as an indicator of global climatic changes. The proposed project shall take into account the following: - general weather and climatic conditions and topoclimatic and microclimatic differentiation of selected sites; - albedo and solar radiation and their influence on the course of the processes; - changes in the circulation of water in space and time (precipitation-evaporation-outflow) as an effect of local and global processes; - analysis of processes that determine the amount of water entering the hydrological cycle including global climatic changes and characteristics of summer ablation in terms of meteorological conditions; - analysis of the factors which determine the occurrence and circulation of waters in the permafrost active layer and assessment of static and dynamic water resources in the active layer in meteorological and hydrogeological aspects; determination and quantitative analysis of the genetic structure of fluvial outflow; - water balance of selected catchments (glacial and periglacial ones) with diverse outflow alimentation sources.

Atmosphere
55. Sea Ice

The Canadian Ice Service (CIS), a branch of the Meteorological Service of Canada, is the leading authority for information about ice in Canada’s navigable waters. CIS provides the most timely and accurate information about sea ice, lake ice, river ice and icebergs to: • Ensure the safety of both mariners and Canadians, their property and their environment through the provision of hazardous ice condition warnings • Provide present and future generations of Canadians with sufficient knowledge to support sound environmental policies In summer and fall data collection and analysis is focussed on the Arctic and the Hudson Bay regions with daily satellite acquisitions. In winter and spring, the data collection is focussed on the Great lakes, the St. Lawrence River and the Gulf of the St. Lawrence and the Newfoundland and Labrador coasts The following products are produced: • In situ briefings, warnings, daily ice charts, image analysis charts, regional charts, observed charts, short- and long-term forecasts and iceberg bulletins and charts; specialised ice information services for Other Government Departments and research communities • Oil spill monitoring; satellite image analysis for oil spill detection • Annual Ice Atlas • Archive of climatic ice information Main gaps: Satellite monitoring of Arctic sea ice is limited to: • Canadian waters, • Bi-Weekly acquisitions from January to March • Weekly acquisitions from April to May • Daily acquisitions of areas where shipping is active from June to November Network type: various: satellite data, observations from ships and aircraft. CIS acquires and analyses thousands of satellite images, conducts millions of square kilometres of airborne reconnaissance and receives hundreds of ship and shore ice reports annually.

Human health Oceanography
56. Hydrological and biochemical monitoring of Revdalen Valley (HREV) (HREV)

To collect hydrological and biochemical data in Horsund, Spitsbergen in the area of Revdalen Valley. Main gaps: Summer season data only, with gaps due to observer and equipment availability.

Atmosphere Ecosystems
57. Hydrological observation network of the Finnish Environment Institute (SYKE) (Hydrological observation networks)

The national program of hydrological monitoring is managed by the Finnish Environment Institute (SYKE), which is responsible for keeping the monitoring networks representative, for giving instructions concerning observations and measurements, for collecting the results into a database and for information services concerning the water situation. Regional environment centers are responsible for the field work needed for maintaining the monitoring stations, but they also have their own regional monitoring programs and information services. The data available from SYKE for northern Finland also include a land cover classification covering the region with a spatial resolution of 25 m. Actual hydrological monitoring observations are available e.g. on snow water equivalent, snow depth, snow density, fraction of snow covered area, soil frost depth, lake and river ice, water temperature, river discharges and water levels. Fig. 4.1 shows the monitoring network for the whole region of Finland. The snow data include monthly or bimonthly observations at fixed snow courses (each course is track of 2 to 4 kilometres providing an estimate on regional snow cover characteristics separately for open and forested areas (actually for six land cover categories). Also water quality (including some optical characteristics) monitoring data are available from selected lakes of northern Finland. Network type: Hydrological in-situ monitoring

Snow and ice properties
58. Permanent research base in the field of glaciology in Barentsburg (Spitsbergen).

1. Snow cover (Spitsbergen) - Study of multi-year changes in snowiness near Nordenskiöld Land - Study of impact of spring-summer snow melting on superimposed (infiltration) ice formation on glacier surface - Study of mechanical and thermophysical properties of snow cover in different Spitsbergen landscapes - Study of impact of snowiness and summer melting conditions on the STL conditions under modern climate change (by the example of multi-year measurements near Barentsburg) - Study of structure and dynamics of large and multi-year snowfields as indicators of current climate change in this region. Contact person: Nikolay Osokin (jsokinn@mail.ru), Ivan Lavrentiev 2. Spitsbergen glacier surge mechanism: - Studies on Grenfjord non-surging glacier Fridtjovbreen surging glacier. Methods: radiolocation, radiophysics, DGPS, mass balance. Contact person: Yury Macharet 3. Monitoring of Spitsbergen polythermal glaciers to assess long-period climate change. Objects of long-term monitoring of changes in geometry and hydrothermal structure of polythermal glaciers: Tavle, Aldegonga Contact person: Yury Macharet 4. Ice deposits on Spitsbergen - Obtaining of new data on glacier thickness and volume - Definition of correlation relationships - Contribution of glaciers to world ocean level Contact person: Andrey Glazovsky 5. Glacier mass balance on Nordenskiöld Land (Spitsbergen): - Aldegonga, Eastern Grenfjord, Tavle - Development of new methods of mass balance measurement: core and non-core drilling, DGPS, temperature survey. Contact person: Andrey Glazovsky 6. Remote sensing (RSD), (Novaya Zemlya, FJL) Development of GIS-base for glaciers on the Russian Arctic archipelagos for remote monitoring of their current state and changes. Assessment of iceberg discharge and ice caps. Observation of glacier dynamics. Contact person: Andrey Glazovsky Yury Macharet 7. Remote sensing and validation (if possible) in situ (Russian Subarctic mountains – Polar Urals, Byrranga, Putorana, Suntar-Khayata mountains, Chersky Range, Koryak Upland, Chukotka) Executors: M. Ivanov, G.A. Nosenko, M.D. Ananicheva, G.A. Kapustin et al (RAS IO), gnosenko@mail.ru, maria_anan@rambler.ru, gregrus@mail.ru, V.A. Sarana, MSU, Research Laboratory “North’s Ecology”, Network type: Data are given for Barentsburg station - atmosphere (RAS PGI, Murmansk) - coastal ecosystem, including freshwater (yes/no) - marine ecosystem: Biological center on Spitsbergen. MMBI, Murmansk (http://www.mmbi.info) Integrated study on Spitsbergen has been carried out since 1994 in the biological center within the framework of MMBI’s International Environmental Laboratory. The main areas of scientific activities on Spitsbergen are as follows: acquisition of comparative data on biodiversity of flora and fauna and marine ecosystems on the north part of the Gulf Stream western branch; development of the model of the impact of melting (fresh) waters on the marine ecosystem in glacier bays of different types on western Spitsbergen; monitoring of Arctic ecosystems evolution and other natural phenomena. - ocean AARI, Saint Petersburg (http://www.aari.ru/main.php?lg=1) - cryosphere: periodic observations of snow cover and glaciers and seasonally melting layer of permafrost formation on Spitsbergen. Remote observations of Novaya Zemlya and FJL glaciers. - human factor anf socio-economic indicators (http://igras.ru/index.php?r=17&id=12) - space physics - (http://www.kolasc.net.ru/pgi_r/)

Ecosystems Oceanography Sea ice
59. National Glacier-Climate Observing System – State and Evolution of Canada's Glaciers (SECG) (SECG)

The State and Evolution of Canada's Glaciers initiative provides information and data products produced by the Federal Government's National Glacier-Climate Observing System (monitoring, assessment and data portal) and related freshwater vulnerability research in western and northern Canada. The Glacier-Climate Observing System is delivered through an integrated monitoring and research collaborative comprised of Natural Resources Canada-Geological Survey of Canada (lead agency), Geomatics Canada-Canada Centre for Remote Sensing, Environment Canada-National Water Research Institute and Water Survey of Canada, Parks Canada Agency, C-CORE Polar View, and academic partners that include the universities of British Columbia, Northern British Columbia, Alberta, Calgary, Lethbridge, Saskatchewan, Regina, Toronto, Brock, Trent and Ottawa, and related academic initiatives such as the Cold Water Collaborative and those supported by the Canadian Foundation for Climate and Atmospheric Science. SECG is a contribution to the NRCan Earth Sciences Sector - Climate Change Geoscience Program. With this data research is conducted on the relationship between climate, glacier fluctuations and their impacts on freshwater systems (e.g., river flow, cold stream ecology, groundwater recharge, flow to oceans). The development of improved remote sensing tools is also a major research thrust. With the support of the Canadian Space Agency, European Space Agency, the Canadian Consortium for Lidar Environmental Applications Research (C-CLEAR), and the NASA - Wallops Flight Facility, new tools and a systematic approach are increasingly brought to bear to understand more completely and with reduced uncertainty the magnitude, causality and impacts of Canada's changing glaciers. System outputs are used to a) inform national and international climate change programs and process; b) improve knowledge regarding the nature and locations of historical, current, and potential future impacts of climate change, c) assist Canadians in understanding and adapting to climate change impacts on natural resources at a regional and national scale. The System also provides leadership and co-ordination of Canada's contribution to World Meteorological Organization’s Global Terrestrial Observing System (GTOS) and its Global Terrestrial Network for Glaciers (GTN-G), the contribution of Essential Climate Variables for GEO/GEOSS, and providing such as Official Communications to the Parties of the Convention UNFCCC. Main gaps: Regional representativeness has been improving with the re-establishment of former sites or the establishment of new sites. Contributions to thematic needs such as water resources, flow to oceans and sea-level change will require improved co-ordination with hydrometric and other monitoring entities. Which Network type: - Thematical observations: yes - Field stations: yes, 20 reference observing sites - Community based observations: some in development (Grise Fjord) - Coordination: SECG guides and co-ordinates observations conducted by partners; SECG co-ordinates reporting for Canada (e.g., GCOS-GTN-G, WGMS)

Ecosystems
60. Arctic Oceanographic Observations

Observations of the Arctic Ocean have been made since the 1800s at varying levels of intensity. The objective is to gain a better understanding of the physical and chemical composition of Arctic waters, the circulation of the waters within the Arctic Ocean, and flows into and out of the Arctic Ocean. Physical observations are conducted on properties of the water column including ocean temperature, sea surface temperature, salinity, pH, carbon, changes in ice coverage and extent, hydrographic measurements, nutrients, etc. Surface drifters either embedded in the ice, or (lately) able to float and operate in ice infested waters, provide measurements of a limited number of surface ocean and meteorological variables. . Additional observations are obtained on ocean currents, waves and tides. Biological observations are captured within a separate inventory item titled “Arctic Marine Biodiversity Monitoring”. Recently, a focus has been on increasing understanding of the impacts of climate change on Arctic waters (e.g., increasing temperature, decreasing pH, decreasing salinity, changing ice conditions, etc.). Data is gathered by ship with in situ measurements, deployment of moorings and buoys, helicopters (e.g. for ice measurements), and satellites (e.g. sea surface temperature). Main gaps: Large geographic areas of the Arctic are not covered regularly. Network type: - Thematical observations: of all oceanographic parameters - Field stations: Research ships and ice breakers of the Canadian Coast Guard; other ships of opportunity as available; moorings and buoys - Community based observations: - Coordination: National coordination of the program provided within Fisheries and Oceans Canada, and the National Centre for Arctic Aquatic Research Excellence (NCAARE)

Atmosphere Oceanography