The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 291 Next
41. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
42. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
43. Physiological studies of arctic birds

The activity in 2004 will be devoted to two projects: First, we will perform banding of breeding adult Kittiwakes in the Kongsfjord area. The Kittiwakes will in addition to standard metal rings be equipped with a colour-ring with a combination of letters and numbers, making identification at a distance easier. This banding programme was initiated in 2003 and will in the coming years be used to calculate local survival rates of the Kittiwakes breeding the Kongsfjord area. Secondly, we intend to place a number of breeding boxes for Snow Buntings in the Ny-Ålesund area. In the coming years this will make access to breeding adults and nestlings easier enabling physiological studies. These studies will focus on various aspects of metabolism and energetics of the breeding population of Snow Bunting on Svalbard, and we also want to compare the physiology of the Svalbard population with the breeding populations on ’mainland’ Norway.

Biology Populations Seabirds Reproduction
44. Contaminants in polar fox

Arctic animals utilize periods with high food availability for feeding and lipid deposition, whereas they rely on stored lipids during unfavorable periods. Hence, many arctic inhabitants exhibit profound seasonal cycles of fattening and emaciation. In the Arctic, feeding is associated with fat deposition and contaminant accumulation. When lipids are mobilized, accumulated contaminants are released into the circulation. Consequently, blood contaminant concentrations may increase markedly and result in a redistribution of the contaminant(s) from “insensitive”, adipose tissues to sensitive organs, and increased contaminant bioavailability. Such variations complicate interpretations of pollutant toxicity, both in effect studies and in monitoring programs, and remains an important future reseach area. In the present study, we will use arctic fox (Alopex lagopus) as a model species for investigating tissue distribution and bioavailability of organochlorine contaminants (OCs) in relation to natural variations in lipid status (field study). These data will be supplemented and validated through a contamination study with blue fox (A. lagopus), where the seasonal changes in lipid status of wild fox are simulated in the laboratory. In both the field and laboratory study, possible effects of OCs on steroid hormone synthesis, and plasma levels of hormones, vitamin E and retinol will also be assessed.

Biological effects Biology Organochlorines PCBs Arctic Persistent organic pollutants (POPs) Pesticides
45. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
46. ARCTAPHID: biology and ecology of aphid populations in arctic environment.

In a context of global change, arctic ecosystems are exposed to deep modifications not only of the biology and ecology of endemic species but also of the interactions they may have with an increasing number of introduced species. This project attempts to assess in Svalbard, the impacts of global changes on aphids. These phytophagous insects are particularly relevant organisms for studies on the effects of global warming and biological invasion because 1) of their extreme sensitivity to micro- and macro- changes due to their spectacular rate of increase and phenotypic plasticity and 2) of their colonizing capacity conferred by their parthenogenetic mode of reproduction and their dispersal potential

ecology Biological effects Biology Populations adaptation Climate change life cycle invasive species Arctic Reproduction aphids Ecosystems
47. Metabolic and hormonal correlates of reproductive effort in the kittiwake

A co-operative project between France and Norway is proposed to study the physiological mechanisms (hormones and metabolic rate) involved in the regulation of parental effort (brood size) in an Arctic-breeding seabird, the kittiwake Rissa tridactyla. This project will be carried out at Kongsfjorden (Ny Ålesund, Svalbard) which constitutes one the northernmost (79° N) breeding site of the species. The main goal of this project is to understand the reasons of the very poor productivity of the species in this high-arctic area (only one chick/pair/year compared to 2-3 chicks/ pair/year in more temperate areas). To do so, we will concurrently study the metabolic cost of chick rearing and the metabolic cost of foraging. To test whether parent kittiwakes are apparently unable to rear more than one chick, we will manipulate brood size and will measure its consequences on basal metabolic rate (BMR) and foraging activity. We will experimentally manipulate the brood size by swapping chicks between nests shortly after hatching. Parent birds of the different experimental groups will be captured, weighted and a small blood sample (500 µL) will be taken for thyroid hormones. BMR will be estimated through thyroïd hormones (Chastel et al. 2003, J. Avian Biol. 34: 298-306), a method that reduces handling time imposed by the use of a respirometer, whereas activity at sea will be estimated using miniature activity recorders (Daunt et al., 2002 Mar. Ecol. Prog. Ser.245 : 239-247, Tremblay et al. 2003, J. Exp. Biol. 206: 1929-1940). Nests of the different groups (12 nests with 2 chicks and 12 nest with 1 chick) will be observed during 2 weeks after what parent birds will be recaptured, and bled again for T3 assay. On an other group of birds (N=10), we will calibrate these miniature activity recorders (N=10, weight:5 g) by observing the activities (rest, brooding, flying, etc..) of the instrumented birds in the colony. Food samples (N=12) will be collected from parent birds during capture and recapture sessions (kittiwakes spontaneously regurgitate food when handled). Breeding adults and chicks will be maked with plastic rings that allow identification from a distance.

parental effort Hormones Arctic Seabirds Metabolism Reproduction
48. Incubation behaviour and energetic strategy during reproduction in long-lived birds :

The aim of this programme was to study the physiological and behavioural adaptations to the incubation fast in the female eider. This leads to study fundamental questions about three complementary field researches described below. 1. Evolutionary and ecological approaches: energetic costs of reproduction during incubation In long-lived birds as Eider, there must be trade-offs between the energy allocated in growth and in reproduction. Therefore, individuals develop different reproductive strategies in relation with biotic and non biotic factors to maximize their fitness. Among factors tested, we will first measure the effects of animal density on female reproductive success. Additionally, we will measure, thanks to genetic tests, 1) the characteristics of eider populations (dispertion) by comparing birds originating from several islands and several locations on the same island, 2) the frequency of intra-specific nest parasitism and 3) extra-pair copulations to link these events with female behavioural decisions. To link reproductive effort with female immunocompetence, we will then perform PHA (phytohaemagglutinine) skin tests at different stages of the incubation period. Finally, we will perform clutch reductions at different stages of the incubation period in order to highlight decision rules controlling nest desertion in females. 2. Physiological and ecological approaches: parental investment in reproduction We will also focus on the implication of prolactin and corticosterone in the control of parental decision at the hatching stage. Implantation of exogenous hormones will be done on nesting birds to evaluate the respective role of these two hormones in the control of parental decisions in eiders. Parental investment in incubation can be regulated by the reproductive value of the clutch size. To further understand the mechanism underlying nest desertion, we will measure the induced-changes in prolactin and corticosterone concentrations after clutch size manipulation overall the incubating period. 3. Physiological approach: regulation of body fuel utilization during fasting The aim will be to study the mechanisms of the regulation of body fuel utilization and energy expenditure during fasting. For this purpose, the ability of eider duck to withstand long periods of starvation will be studied by measuring the variations in plasma of major substrate concentrations (as index of lipid or protein breakdown) and hormones (e.g., leptin, glucagon, corticosterone, T3, ...). The study of duck’s adaptation to extended fasts occurring at specific stages of their life might help to understand important underlying mechanisms, such as reduction in energy expenditure, long-term regulation of body fat storage and mobilization, as well as long-term control of food intake.

Biological effects Biology Arctic birds reproduction ecophysiology
49. Behavioral and evolutionary implications of strict monogamy. An experimental approach in panarctic seagull: the black-legged kittiwake Rissa tridactyla breeding in Alaska

This project's goal is to experimentally study strict monogamy in a panarctic seagull, the black-legged kittiwake, in Alaska. It studies mate choice (which is crucial because no mixed strategy is used) in relation to indivdual quality, fitness and sexual conflict in strictly monogamous species. It is rooted in a detailed knowledge of the species’ biology and the merging of three teams (French, Austiran and Alaskan) with long-term experience researching kittiwakes. It uses the unique experimental Alaskan setting for wild populations.

Evolution Biology Sperm competition Populations Mate choice Biodiversity Arctic Seabirds Reproduction Sexual Selection Behavioural Ecology
50. The Effect of solar UV on lipids in the planktonic food chain of polar freshwater ponds

Plankton of shallow polar freshwater water bodies is exposed to increasing levels of ultraviolet radiation (UVR) due to the limited water depth. Daphnia (Crustacea, waterflea) and algae are common representatives of the food chain in these water bodies. Daphnia almost exclusively use lipids for energy storage, which they obtain from their food (mainly algae). Therefore, Daphnia and algae are closely linked to each other. Preliminary experiments on the UV-induced damage in phyto- and zooplankton point to lipids as one of the key players. With this application we want to identify how algae specific lipids and fatty acids (FA) are modified by UVR. The factors modifying UV-doses to the animals and their food are depth of the waterbody and DOC (absorbs UV). A pondsurvey shall provide a wide spectrum on ponds which vary in DOC and depth. Lipid analysis of Daphnia and their food of these ponds as well as physical parameters of the pond waters shall identify correlations between UV-exposure and specific fatty acids. This shall enable us to estimate the effect of solar UVR on the freshwater plankton community in polar ponds.

Biological effects UV radiation freshwater plankton Climate change Exposure Arctic Food webs Diet Ecosystems lipids
51. Long distance pollen transport in the Arctic: 1. Greenland

The submitted proposal aims to perform the monitoring of the pollen rain in the Greenland atmosphere by distinguishing the local pollen production, relatively low, from pollen grains originating from other Arctic areas. A regular monitoring of the atmospheric pollen content must be performed in order to evaluate the amount emitted and characterise the seasonality of the emission. A comparison with air mass trajectories must allow the modelling of long distance transport

Biology Climate variability Spatial trends Modelling Biodiversity Data management pollen Atmosphere Ecosystems
52. Living in a spatially structured environment: evolutionary ecology of seabird-parasite interactions

The aim of this research program is to examine the response of animal populations to environmental variability at different spatial scales. We attempt to determine how individuals respond to the spatial heterogeneity of their environment, and what are the consequences of this response for the dynamics of subdivided populations. Specifically, we consider an ecological system involving biotic interactions at three levels: seabirds, their tick _Ixodes uriae_, and the microparasite _Borrelia burgdorferi_ sensu lato (Lyme disease agent). Colonies of seabirds represent discrete entities, within and among which parasites can circulate. Our previous work on this system in the norwegian arctic has enable us to show that (1) host dispersal can be affected by local conditions, (2) seabird tick populations are specialised among different host species, namely between sympatric kittiwakes _Rissa tridactyla_ and puffins _Fratercula arctica_, (3) in the kittiwake, females transmit antibodies against _Borrelia burgdorferi_ when their chicks have a high probability to be exposed to the tick vector. We propose to combine different approaches, incorporating field surveys and experiments and population genetic studies (of hosts and parasites), in order to better understand the role of local interactions and dispersal in the dynamics of such a system. The research program implies collaborations with researchers from other french groups, as well as with Canadian (Queen’s University) and Norwegian colleagues (from NINA and the University of Tromsø).

Biology Populations Epidemiology Evolutionary ecology Spatial trends Biodiversity Seabirds Ecosystems
53. Bacterial growth in cloud droplets

It is well known that the atmosphere is a conveyor of microorganisms, and that bacteria can act as ice or cloud condensation nuclei, but clouds have not been considered as a site where organisms can live and reproduce. We could show that bacteria in cloud droplets collected at high altitudes are actively growing and reproducing at temperatures at or below 0°C. Since ~60% of the earth surface is covered by clouds, cloud water should be considered as a microbial habitat.

bacterial activity Biology cloud droplets Atmosphere Ecosystems supercooled water
54. Interactions between meiofauna and mat-forming microbes at the sediment-water interface - implications for benthic-pelagic coupling in coastal systems

The project investigated small-scale biotic interactions between laminated microbial communities and meiofauna at light-exposed sediment-water boundaries of estuarine lagoons. The production and biological structure of these systems is mainly determined by complex processes at the sediment-water interface which depend on finely scaled patterns, requiring appreciation of how the biota interact within these scales. We tested whether changing light conditions and active emergence of the harpacticoid species Mesochra lilljeborgi and Tachidius discipes are mediated by the activity of benthic oxygenic and anoxygenic phototrophic microbes. Two hypotheses were tested which addresses to the question of causality between changing light conditions and active emergence of the harpacticoid copepods. (1)The harpacticoid copepods T. discipes and M. lilljeborgi will enter the bottom water during daylight when oxygenic photosynthesis of cyanobacteria and eukaryotic algae is blocked and conditions at the sediment-water interface have turned anoxic. (2)Both species will not emerge during dark exposures when transferred to sterilized sediments.

Biological effects Biology copepod microbial communities interactions Sediments Ecosystems
55. Life cycle strategies linked to adult development and reproduction in the Northern krill, Meganyctiphanes norvegica. Study of the Gullmarsfjorden population.

To recognize some life cycle strategies linked to adult development and reproduction in the Northern krill, Meganyctiphanes norvegica, in the Gullmarsfjorden population. Sampling of krill and analyses of the distribution of sex, body-size, moult and reproductive development stages.

Biology Meganyctiphanes norvegica krill life cycle
56. Interactions between appendicularian and copepod grazing on dinoflagellate blooms

To be completed.

Biology copepod grazing dinoflagellate blooms Food webs Diet
57. Proximate ecological controls on the swimming behaviour of coastal euphausiids

To examine the way in which light intensity and spectrum affects the swimming behaviour and activity of the pelagic euphausiid Meganyctiphanes norvegica. Our initial objective was to develop a method with this animal where clear behavioural responses could be related to various stimuli. By tethering the animals it was hoped that it would be possible to look at the responses of Meganyctiphanes norvegica to subtle changes in light intensity, of the range they might be expected to experience in their natural habitat. Concomitant with the main objective, animals were sampled over 24 hours to look for the presence of clock proteins and examine the movements of visual pigments. To relate any pigment migration to changes in light intensity that the animals might have experienced in situ, animals were also exposed to known quanta of light and then fixed.

Biology euphausiids swimming behaviour Meganyctiphanes norvegica light intensity pigment
58. The significance of localised nutrient regeneration for the development and maintenance of nuisance macro-algal blooms in shallow embayments

The main objective was to investigate the importance of the sediment as a nutrient source for blooms of nuiscance filamentous algae. Nutrient fluxes from the sediment were hypothesised to be of greater importance in maintaining algal biomass than were nutrients originating from the overlying water column. We aimed to assess the relative importance of algal mats on sediment geochemistry and nutrient release under stillwater and controlled flow conditions. Using nutrient fluxes as a surrogate for ecosystem function, we wished to investigate the role of species richness in maintaining the integrity of nutrient diagenesis. In this context, it is not necessarily the number of species that is important in maintaining nutrient supply to algal blooms, but the contribution individual species make to mediate nutrient release.

Biological effects Biology bloom filamentous algae nutrient flux Sediments
59. Metabolic and behavioural reactions of Nordic krill, Meganyctiphanes norvegica, from Gullmarsfjorden towards environmental factors

The phsyiological and locomotive reaction to factors that influence environmental behaviour of Nordic krill from the Gullmarfjorden were studied in terms of swimming energetics, predator avoidence and food utilization. In a newly developed experimental approach, individuals were maintained under defined conditions in flow through chambers and continuously monitored for swimming activity and oxygen consumption. Chemical, physical and biological parameters were applied and the reaction of the krill determined. Stress levels, defined this way, will serve as a reference for unfavourable conditions in the field. Thermal characteristics of digestive enzymes from the midgut gland were furthermore identify the optimum conditions for nutrient assimilation. The results will contribute to the understanding of diel vertical migration, dispersion and aggregation of krill which, in turn is essential for the interpretation of ecosystem dynamics and trophic interactions.

Biological effects Biology krill predator avoidence swimming energetics food utilization oxygen consumption
60. Reproductive dynamics of the two-spotted goby (Gobiusculus flavescens)

The project as a whole consists of a number of sub-projects which are: a) Is female coloration a signal of quality? b) Do males conduct post-spawning mate choice through differential filial cannibalism? c)Do female preferences for male size change throughout the season? d)Do female common gobies compete for access to high-quality males? e)Are male reproductive decisions influenced by prior expectation of female quality? f)How is male-male competition over nest sites influenced by resource holding potential and resource value? g)How do parasites influence mate preferences in two-spotted gobies?

Biology two-spotted goby Gobiusculus flavescens reproduction