The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 41 - 60 of 73 Next
41. Marine biodiversity and climate change (MARCLIM)

1. To use a combination of archival and contemporary data to develop and test hypotheses on the impact of climatic change on rocky intertidal animals and plants. 2. Forecast future community changes based on Met. Office Hadley centre models and UKCIP models. 3. Establish a low-cost fit-for-purpose network to enable regular updates of climatic impact projections. 4. Assess and report likely consequences of predicted changes on coastal ecosystems. To provide general contextual time-series data to support marine management and monitoring. 5. Evaluate use of intertidal indicator species as sustainability indices. Disseminate the results as widely as possible. 6. Provide a basis for the development of a pan-European monitoring network.

Climate variability Spatial trends Environmental management Climate change Biodiversity Temporal trends Ecosystems
42. UK Marine environmental change network

1. Establish a network to measure environmental change in marine waters by undertaking long-term research and monitoring 2. Maintain and enhance existing long-term research programmes 3. Restart important discontinued long-term research programmes 4. Develop a quality controlled database of long-term marine data series 5. Deliver and interpret long-term and broad scale contextual information to inform water quality monitoring 6. Demonstrate the benefits of preserving and networking long-term time series programmes

Biological effects Mapping Climate variability Environmental management Climate change Modelling Biodiversity Data management
43. Development of Elasmobranch Assessments (DELASS)

1. The improvement of the scientific basis for the management of fisheries taking elasmobranch species by: a)Species Identification /biological sampling b)Stock discrimination / separation c)Data compliation and exchange d)Data preparation, stock assessment & species vulnerability

Shelf seas Fish Spatial trends Environmental management Biodiversity Ecosystems Marine mammals
44. Marine artificial habitat manipulation: predicition and measurement of environmental impacts

1. To establish an environmental monitoring regieme during and following the period of reef complex construction using, where possible, the same static monitoring sites and transects established during the pre-deployment research, in addition to new stations 2. To develop and test models that will predict ecosystem changes caused by artifical habitat manipulation. The main model will examine whole ecosystem changes. Other models will examine hydrological profile alterations, habitat fractal dimensions and socio-economic cost benefit analysis.

Fish Environmental management Biodiversity Food webs Temporal trends Ecosystems
45. Atlantic Coral Ecosystem Study (ACES)

Objective 1: To map the structural and genetic variability, the framework-constructing potential, and the longevity of Deep Water Coral (DWC) ecosystems Objective 2: To assess hydrographic and other local physical forcing factors affecting Benthic Boundary Layer (BBL) sediment particle dynamics and POC supply in the vicinity of DWC ecosystems Objective 3: To describe the DWC ecosystem, its dynamics and functioning; investigate coral biology and behaviour and assess coral sensitivity to natural and anthropogenic stressors Objective 4: To assign a sensitivity code, identify the major conservation issues (and increase public awareness), and make recommendations for the sustainable use of the DWC ecosystem

Mapping Fish Environmental management Oceanography Biodiversity Corals Ecosystems
46. Chemical and microbial ecology of boreal Demosponges from the Korsfjord

Many marine sponges produce and store pharmacologically-active metabolites. There is an ongoing discussion as to whether some of these compounds are produced by the sponge itself, or by associated bacteria which can account for more than 60% of the sponge biomass. Co-metabolic activity between sponge cells and sponge associated bacteria (SAB) has also been postulated. Anaerobic bacteria are occasionally found in sponge tissue, though their contribution to sponge metabolism is completely unknown. There is increasing interest in biotechnological production of sponge biomass for sustainable use of this promising marine resource. Our studies will contribute to a thorough understanding of sponge-bacteria interaction, and form the basis for the development of biotechnological methods. Most research has been done on tropical and subtropical sponges. Participants of this project will apply, for the first time, microbiological and chemical studies on boreal sponges. Objectives: • Description of chemical conditions in sponge tissue: occurrence of microniches • Cultivation of specific groups of aerobic and anaerobic sponge associated bacteria • Establishment of novel methods for co-cultivation of sponge cells and bacteria • Identification of new bacterial biomarkers • Elucidation of connections between spatial distribution of associated bacteria and metabolites with a focus on anoxic zones and anaerobic microbial communities (especially sulfate reducing bacteria and Archaea) • Investigation of chemical communication and other interactions (´bacterial farming´) between sponge cells and bacteria as well as sponges and their environment

Biology Biodiversity
47. Ecological interactions between zoo- and phytobenthos with regard to defense-mechanisms against grazing pressure

Benthic macroalgae communities of the arctic ocean provide habitat, protection, nursery and nutrition to a large number of invertebrates. In contrast to temperate and tropical regions the basic ecological interactions between zoo- and phytobenthos of the Arctic are little understood. Therefore this project for the first time investigates biological and chemical interactions between invertebrates and macroalgae on Spitsbergen/Svalbard (Koldewey Station) with special emphasis on defense mechanisms against grazing pressure. Initial diving-investigations will map the invertebrate fauna which is associated with the macroalgae; the following feeding-experiments with herbivorous animals aim to selectively identify generalists, generalists with preference or specialists. Additional bioassays serve to reveal structural and/or chemical properties of those plants, which affect a specific impact on the grazing of herbivores. Our investigations on the chemical protection of the algae against grazing focus on the basic mechanisms and the chemical structure of potent secondary metabolites carried out in cooperation with natural product chemists.

Biological effects Biology Chemical protection Zoobenthos Phytobenthos Invertebrates Macroalgae Biodiversity Arctic Ecosystems
48. Succession of benthic communities in polar environments, benthic resilience in polar environments: A comparison

Succession of communities and individual growth of benthic invertebrates are more or less unknown in polar waters, but nevertheless are the basic parameters of understanding the benthic sub-ecosystem, delivering data for modelling and prediction of the system´s development. Three localities, two in the Antarctic and one in the Arctic, the Kongsfjord in Spitsbergen, have been choosen as investigation localities. Hard and soft substrates, which will be sampled in regular intervalls during the duration of the project, will be deployed at different depths. The analysis includes species composition, species growth and, with respect to soft substrates, sediment parameters.

Biological effects Biology Benthic communities Benthic invertebrates Marine benthos Biodiversity Arctic Ecosystems
49. Snow algae in Svalbard

This project (of Humboldt University of Berlin) is a long-study of the ecology and physiology of Arctic snow algae in Ny Ålesund region (Krossfjorden, Blomstrandhalvøya and Prins Karls-Forland). The main objectives are: - Characterision of snow algae fields and probe collections - Physiological characterision of single algae cells at different stages of development (e.g. by dielectric single cell spectroscopy, immuno-fluroescence microscopy and element analysis) - Cultivation in home laboratories.

Biology Biodiversity Arctic Snow algae
50. Effects of UV radiation on growth and recruitment of macroalgae: implications for vertical zonation of macroalgae across a latitudinal gradient

This study will be designed to determine the response mechanisms of representative species of macrophytes along the tide flat to provide the physiological basis for answers for ecological questions, in particular how the community structure of various beds of macroalgae from the intertidal to the subtidal (eulittoral to sublittoral) region of the coastal ecosystem is affected by enhanced UV radiation. In situ measurement of photosynthetic efficiency, growth, community structure and succession will be conducted to investigate how do different species of macrophytes respond to changes in the light environment over a depth gradient and across seasons of the year. It is hypothesized that the differences in the ability to tolerate stress are the main factors controlling the distribution pattern of macrophytes. With the limited understanding in the control of tolerance, elucidating the mechanism of stress in the physiology and ecology of the organisms will allow us to quantify the impediments encountered by organisms inhabiting the tide flats. Objectives: 1. To measure the daily and seasonal variation in photosynthetically active and ultraviolet radiation. 2. To characterize the macrophyte community structure of the coastal habitat. 3. To perform UV exclusion and UV supplementation experiments in order to assess its effect on the growth of some macrophyte species in the field and in mesocosms. 4. To assess the prevention of UV damage in selected macroalgae by production of sunscreen pigments. 4. To determine the recruitment rate, recolonization pattern and succession under PAR and varying UVR condition.

Biological effects Marine Algae UV radiation Seaweeds Climate change Exposure Biodiversity Ecosystems
51. Negative effects of UV radiation on organisms

Due to its high energy, UV radiation can induce severe damage at the molecular and cellular level. On the molecular level proteins and lipids, as well as nucleic acids are particularly affected. Conformation changes of certain proteins involved in photosynthesis, such as the reaction center protein (D1) of photosystem II or the CO2 fixing enzyme in the Calvin cycle (RuBisCo) lead to an inhibition of photosynthesis, and consequently to a decrease in biomass production. This might shift certain algal species into deeper waters, not reached by UV radiation. The aim of the studies is to demonstrate how strong an increase of UV radiation due to stratospheric ozone depletion will influence the depth distribution and biomass production of macroalgae, and which molecules and processes are most severely affected. Moreover, it will be studied, which stage in the life cycle of the individual species is most sensitive to UV radiation as it will be this particular stage, which in the end determines the upper distribution limit of a certain species on the shore.

Biology Marine algae UV radiation Seaweeds Environmental management Climate change Biodiversity Ecosystems
52. Lake Myvatn and the River Laxá

The aim is to monitor the Lake Myvatn and the river Laxá ecosystem for (1) detecting trends, (2) detecting background variability in the system, (3) assess the efficiency of management measures, (4) observe perturbations in order to generate hypotheses about causal relationships.

Biological effects Biology Populations Catchment studies Fish Spatial trends Environmental management Mining Waterbirds Modelling Biodiversity Arctic Local pollution Food webs Sediments Diet Temporal trends Ecosystems
53. The Arctic sea ice ecosystem in recent environmental changes

Biological materials obtained in the central Arctic Ocean at the FSU “North Pole stations” in 1975-1981 have shown that the multi-year ice and ice/water interface is of rich and diverse biotop inhabited by the large number of diatoms and invertebrate animals. Two main matter fluxes in the sea ice ecosystem may be distinguished: (1) the inflow of biogenous elements from water into the ice interior where they are assimilated by the microflora during photosynthesis (summer stage), and (2) the outflow – from ice to water - of the organic matter accumulated in the summer due to photosynthesis (winter stage). Accumulation of organic matter within the sea ice interior during the process of photosynthesis may be considered as an energy depot for organisms of the whole trophic network of the arctic sea ice ecosystem. Recent data from the SHEBA Ice Camp drifted within the Beaufort Gyre 1997-1998 have shown that: (1) sea ice diatoms are very scarce by species and numbers; (2) fresh water green algae are dominated by numbers and distributed within the whole sea ice thickness; (3) invertebrate animals within the sea ice interior are not indicated; (4) invertebrate animals from the ice/water interface are scarce by species and numbers; (5) concentrations of chlorophyll and nutrients in the sea ice are significantly lower of the average concentrations measured before in this region for the same period of time. Remarkable accumulation of the organic mater within the sea ice interior were not indicated.

Biological effects taxonomy Biology Sea ice Climate change Arctic Ocean Ice Biodiversity Arctic production sea ice biota
54. Biodiversity and adaptation strategies of Arctic coastal marine benthos

The objectives of the project are to assess: 1) the present biodiversity of benthos in Arctic coastal ecosystems (White Sea, southern Barents Sea, Pechora Sea), and indicators for changes caused by disturbances; 2) the adaptations to the Arctic climate for some benthic key-species, the additional influence of disturbance and the sensitivity of the key-species to additional stress from disturbances; 3) the geochemical background of the regions Research activities: Annual missions by ship for sampling water, sediments and macrobenthos. Biodiversity analysis of macrobenthos in sediments in laboratories in Murmansk (MMBI) and Tromsø (Akvaplan-Niva), ecophysiological analyses in laboratories of St. Petersburg (ZISP), Yerseke (NIOO-CEMO) and Pisa (UN), analyses of pollutants in laboratories in Moscow (MSU), Nantes(UN) and Pisa (UP), geochemical analyses of water and sediment in laboratories of Moscow (MSU) and Barcelona (UB). Training of 3 PhD students

key species Biological effects Biology Populations indicators Heavy metals Climate variability Climate change Biodiversity Sediments Ecosystems genetics benthos
55. Barents Sea Marine Ecosystem

This study aims at reconstructing the Barents Sea marine ecosystem before the exploitation by man. This reconstruction will be made by using the existing archival resources on catch statistics from the 17th to 19th centuries in the Netherlands, Germany, Denmark and the United Kingdom, in combination with the present knowledge an animal behaviour and food web structure. Fieldwork is planned in two former hunting areas in Spitsbergen: the Smeerenburgfjord and the Storfjord to study both the structure of the recent marine ecosystem and the composition, size and dating of the recent bird rookeries. This information in combination with the historical data will be used to reconstruct the original ecosystem.

whaling Biology Populations Biodiversity Seabirds Food webs Ecosystems Marine mammals
56. Population ecology of arctic geese in relation to natural predation pressure

In order to manage populations of migratory geese a better understanding of the mechanisms that determine the size of these populations is needed. The objective of this project is to investigate such mechanisms, within the framework of the entire population of Dark-bellied Brent Geese, that winters in western Europe, and breeds in northern Siberia. The final objective of this project is to help predict future numbers of geese that will winter in western Europe in order to be able to forecast levels of agricultural damage caused by geese. Though hunting is an important factor determining the size of most goose populations, this is not a focal point in this project. Therefore this project focuses on a virtually non-hunted subspecies, viz. the Dark-bellied Brent Goose. Research activities Field work has been carried out in the Pyasina-delta in northern Taymyr, Russia during six consecutive summers from 1990 - 1995 in order to cover two complete lemming cycles. The project focuses the one hand on natural predators (like arctic foxes, Snowy Owls, Glaucous Gulls and Herring Gulls, and even Polar Bears) as a regulatory mechanism for the Dark-bellied Brent Geese, a virtually non-hunted subspecies. Lemming cycles have an important effect on the abundance and behaviour of most of these predators, and measuring lemming density forms an integral part of this study. On the other hand weather conditions, as well as the body condition of the geese themselves are being studied, because those factors are in themselves extremely important predictors of breeding success.

Biology Populations lemmings Biodiversity geese Food webs predation Reproduction breeding sucess Ecosystems
57. Greenland Right Whale

The ecology of the Greenland Right Whale is studied using the historical information from written sources from Dutch archives. The Spitsbergen and Davis Strait populations of the Greenland Right Whale were so heavily hunted that they are almost exterminated now in the northern waters. The whale bones on the beaches of Arctic islands are the archaeological evidences of this exhausting hunt. Very often whaling logbooks, crew statements and lists of catch figures are the only sources of information preserved of this animal in these regions. In this project recent biological information of the animal in the seas around Alaska and historical information of the whale in the North Atlantic and Davis Strait is used to reconstruct the migration, distribution and ecological behaviour of the Greenland Right Whale in the North Atlantic Ocean.

whaling Biology whales Populations Biodiversity Marine mammals
58. Ecological energetics of Arctic breeding birds

Large numbers of birds breed each summer on the tundra of the northern hemisphere. Two prominent groups in the Arctic bird fauna are waders and waterfowl (ducks, geese and swans). Breeding, which is an energetically costly activity (Drent & Daan 1980), is especially costly in the high Arctic. This is mainly due to low temperatures and high wind speeds in an open landscape (Piersma & Morrison 1994, Wiersma & Piersma 1994). In addition, the summer period is very short. This leaves little time for necessary pre-breeding, breeding and post-breeding activities. Thus, costs are high and available time is short. In order to reach their breeding grounds, arctic birds have to migrate over vast distances between their Arctic breeding sites and temperate or tropical wintering grounds. Migration is also an energetically costly event. This generally high rate of living puts high demands on the birds and we may expect the birds to have evolved a wide range of physiological and behavioural adaptations. Given the inaccessibility of most tundra areas and the necessity of relatively advanced techniques, ecological energetic studies of wader and waterfowl are relatively scarce (with the notable exception of tundra breeding Nearctic geese). With this project we aim at measuring and describing some important energy turnover processes of waders and waterfowl during the short and hectic Arctic summer and to evaluate them in an evolutionary context. We will pay particular attention to the importance of energy and nutrient stores with which the birds arrive at the breeding grounds for egg production, energy turnover of breeding birds in relation to species and microclimate, and the fat deposition and basal metabolism of birds preparing for autumn migration. The project is partly a continuation of work carried out during the Swedish-Russian Tundra Ecology Expedition 1994 (TE-94). Research activities: Capital vs. income breeders Since the favourable season is short for Arctic breeding birds, they are hard pressed to start egg laying immediately after arrival at the breeding grounds. However, upon arrival food availability is often low. It is thought that female birds planning to start a family on the tundra are forced to produce a clutch using, at least to some degree, body reserves accumulated prior to or during their migratory journey. Birds using such a strategy are called capital breeders, in contrast to income breeders' that only use resources obtained during the reproductive period (Drent & Daan 1980). We seek to investigate how commonly the capital breeder strategy is on the Nearctic tundra and how its use varies with: - Species: large species are expected to be more dependent on this - Strategy as their breeding seasons are longer and they are thus more time stressed. - Site: birds at sites where circumstances allow an early start of the breeding season may not be equally dependent on capital breeding than birds using late sites. - Timing: early arriving birds are more pressed to use the capital breeding strategy than late arriving birds, the latter being able to produce eggs from the food available upon arrival. The different potential food sources to birds often have distinct isotopic ratios of C12/C13 and N14/N15 depending on environment and metabolic characteristics. Isotopic ratios of C and N can therefore serve as a kind of fingerprint for these food stuffs. These specific ratios will ultimately also be reflected in the isotopic composition of the consumers tissues; especially with regard to C12/C13 ratios (Hobson & Clark 1992). Distinct differences may therefore also be expected in tissue isotope ratios of newly hatched young from capital and non-capital breeders. Such differences may also appear within nests in case the female has used a mixed strategy. Although in developing tissues these differences may rapidly fade away, isotope differences between young may be fixed in down feathers already present at hatching. Comparing the isotope ratios in down samples within broods with isotope ratios in potential food sources at the breeding ground thus provides a clue to the extend the mother made use of the capital breeding strategy. We will collect down, feathers and blood from all birds trapped. We will concentrate on waders, yet, also waterfowl are of high interest (although the chances to trap birds are smaller). Of highest priority will be down from chicks and blood from parent birds. In likely foraging areas of parents and chicks that we have sampled, we will collect insects and plants and other possible food sources. At the NIOO the samples will be analysed for C12/C13 and N14/N15 ratios using mass spectrometry. The fact that we will visit many different habitats with different climate, foraging conditions and phenology is a major prerequisite for successfully conducting this part of the project. Energy turnover of brooding birds The few available measurements of daily energy expenditure (DEE) of incubating waders in tundra regions, using the doubly labelled water (DLW) method, have shown that breeding in the High Arctic is indeed costly (Piersma & Morrison 1994, Piersma et al. unpublished data from Siberia). The high cost stems from the combined effects of low temperatures and high wind speeds in an open landscape, but may also be affected by the birds own intense foraging activities. However, the measurements that have become available up till now do not cover the whole "climate space" that arctic breeding waders encounter, due to the bias in study sites and the particularities of weather conditions during the few studies that have been carried out. We would like to extend the series of measurements using DLW in incubating waders of more species than hitherto available and under more environmental conditions. Field measurements of DEE involve initial capture of a bird on the nest, loading it with DLW and recapturing the bird after a certain period of time, usually 24-48 hours. There is room for improvement over the earlier studies in monitoring the loaded birds activity budget (using transponders, small radiotags and/or nest/egg temperature recorders) and in assaying the birds physiological status. Apart from mass and size variable, birds could probably be assayed for the thickness of the breast muscle (a heat generating part of the body) and the size of the stomach (as an indicator of the digestive apparatus) using ultrasound. These techniques are under development at NIOZ and the University of Groningen at the moment. Equally, body composition in terms of fat and lean components could be estimated from dilution factors after quantitative DLW injections. It is crucial to simultaneously measure the meteorological variables air temperature, wind speed and global solar radiation, and hence a weather station has to be brought to the study sites to this effect. Fat deposition and basal metabolism of birds preparing for autumn migration Waders need high-performing bodies to cope with their energetically high rate of living. This is reflected in their basal metabolic rate (BMR). The BMR of an animal is the energy it spends at rest (i.e., at night for day-active animals), in thermoneutral conditions, without processing food, and when it is not involved in productive activities like reproduction, moult or growth. The BMR of a bird may be compared with the fuel consumption of a car engine that is running idle. A Formula-One car, that operates at an incredibly high rate also has a high cost of running idle. A standard car with a less impressive engine takes less energy to keep running. As the cost of running idle reflects the potential power of an engine, the BMR reflects the potential rate of work of an animal body. Waders have comparatively high BMR compared to other non-passerine birds (Kersten & Piersma 1987). Moreover, studies of captive Knots have shown that they vary their BMR over the year (Piersma et al. 1995). In addition, waders trapped during the first part of their autumn migration in Arctic Eurasia were found to have higher BMR than their conspecifics at tropical wintering grounds in Africa (Kersten et al. in press, Lindström in press a). This all suggests that waders can adjust the size of their engine which makes sense, since the best solution would be to have a strong engine when circumstances so demand, and a smaller engine during more relaxed parts of the year (for example at wintering grounds in Africa; Klaassen et al. 1990). Although we are actually most interested in the long-term maximum rate of energy expenditure as a measure of adaptations to a high rate of living, this is very difficult to measure, and especially so in a comparable way. Instead, the BMR, which is supposed to reflect the maximum energy turnover potential, is fairly easy to measure, and figures from different investigations can be compared. During TE-94, 24 juvenile waders of five different species were measured for their BMR in a respirometer (Lindström in press a). We want to continue this work by including birds of new species, and of the same species but from another breeding area. Juvenile birds will be caught during the first parts of the autumn migration (mainly August) in portable and walk-in traps. They are then brought to the ship where they will be measured in the respirometer. The BMR values will be compared to those obtained during TE-94 and with data from the migration and the wintering grounds in America and Europe to look for inter- and intra-specific patterns. Whereas it is fairly well known that many (most ?) wader species put on huge energy reserves prior to migration to the Arctic, almost nothing is known about the size of reserves carried by waders prior to departure from the Arctic. This is necessary to know in order to understand the migration strategies adopted (Alerstam & Lindström 1990) and when analysing migration routes. During TE-94 almost 300 juvenile waders were trapped during August, most of them being Little Stints Calidris minuta. It was revealed that also when migrating from the Arctic, substantial energy reserves were put on (Lindström in press b). We now want to collect corresponding data from the Nearctic. Whereas much is known about the size of energy reserves of migration waders further south in America (for example, McNeil & Cadieux 1972, Thompson 1974, Johnson et al. 1989, Driedzic et al. 1993), we know of no such data from the Nearctic region.

ducks Biology waders Populations breeding success energetics swans Biodiversity geese survival strategies Reproduction wildfowl migration
59. Bewick's Swan ecology of migration and reproduction in the Pechora Delta, Russia

International cooperative research program (field work in 1992-1996) on Bewick's Swans, on ecological limitations in the annual cycle, mainly during periods of high energy expenditure, i.e. breeding and migration. Relates to feeding ecology (both terrestrial and aquatic (pondweed tubers) vegetation, annual variation in climatic conditions. Aims at: 1. understanding limiting factors for population size (production of young and survival) 2. understanding migratory behaviour in this large species 3. protecting crucial areas for breeding, moulting and migrating for this vulnerable swan population Research activities: - Field expeditions (2-5 months) to the Arctic, covering the entire breeding season, including moult and pre-migratory fattening - Running a ringing project with over 1,000 individually marked birds - Data analysis and publications

Biology Populations breeding success survival swans Biodiversity Reproduction migration behaviour
60. Goose breeding ecology: overcoming successive hurdles to raise goslings

Determining ecological constraints for Barnacle Geese during the Arctic summer to understand individual breeding success. Geese are individually marked, measured and observed over their lifetime in order to study individual reproductive strategies and their consequences. Also the interaction between the geese and their food plants is studied in detail. Research activities Every year, during summer, fieldwork in Ny Ålesund, every two years counting geese along Norden-skioldkysten. Both areas are located on Spitsbergen.

Biology breeding success Biodiversity geese