Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 261 - 280 of 955 Next
261. USGS Benchmark Glaciers

USGS operates a long-term “benchmark” glacier program to monitor climate, glacier geometry, glacier mass balance, glacier motion and stream runoff.

Ecosystems
262. Real-time Permafrost and Climate Monitoring Network – Arctic Alaska

More information about the following long-term observing activities will be available in due course

263. USGS Contributions to the Climate Change Science Program – Permafrost Monitoring

More information about the following long-term observing activities will be available in due course

264. National Streamflow Information Program (NSIP) (NSIP)

The mission of the NSIP is to provide the streamflow information and understanding required to meet local, State, regional and national needs. For additional information about USGS water resources programs and data, go to: • Program Description: http://alaska.usgs.gov/science/water/index.php • Contact: Steven Frenzel, sfrenzel@usgs.gov • Surface water data availability: http://waterdata.usgs.gov/ak/nwis/sw • Water quality data availability: http://waterdata.usgs.gov/ak/nwis/qw • Groundwater data availability: http://waterdata.usgs.gov/ak/nwis/gw Main gaps: Extremely sparse coverage in Alaska in general.

Ecosystems
265. Application of High-Frequency Radar to Potential Hydrocarbon Development Areas in the Northeast Chukchi Sea: Physical Oceanography of the Chukchi Sea OCS

Understanding the physical oceanography of the northeast Chukchi Sea through the collection of real time High Frequency Radar (HFR) surface current measurements from shore-based systems, deployment of sub-surface Acoustic Doppler Current Profilers (ADCP), and the use of Automated Underwater Vehicles (AUV). Providing oceanographic data sets for guiding the development and evaluation of ocean circulation, wave and oil spill trajectory models.

Oceanography
266. Beaufort and Chukchi Seas Mesoscale Meteorology Model

1. Produce a geospatial surface meteorological database for the Beaufort and Chukchi Seas and the adjacent coastal areas by collecting available conventional and unconventional surface and atmospheric data and conducting field work; 2. Establish a well-tuned Beaufort/Chukchi seas mesoscale meteorology model through further modeling studies for the optimization and improvement of the model physics and configuration; 3. Conduct a long-term hindcast simulation with the optimized data-modeling system and produce a high resolution meteorological dataset for the Beaufort and Chukchi regions; and 4. Document the high-resolution climatological features of the Beaufort/Chukchi seas’ surface winds, including an analysis of the interannual variability and long-term

Atmosphere
267. NPS Inventory and Monitoring Program, Alaska Region

To determine status and trend in the condition of selected natural resources in national park units in Alaska. There are four networks, each encompassing activities in a set of national parks, preserves and other park lands: • Arctic Network (ARCN): Gates of the Arctic, Noatak, Kobuk Valley, Cape Krusenstern, Bering Land Bridge. • Central Alaska Network (CAKN): Yukon-Charley Rivers, Denali, Wrangell-St. Elias. • Southwest Alaska Network (SWAN): Kenai Fjords, Lake Clark, Katmai, Alagnak Wild River, Aniakchak. • Southeast Alaska Network (SEAN): Glacier Bay, Klondike Gold Rush, Sitka. Main gaps: Not all data are currently available but we are working toward that goal. Funding limitations do not allow monitoring at detailed levels.

Atmosphere Ecosystems
268. Barrow Long-term Breeding Ecology Study (Barrow Shorebirds) (Barrow Shorebirds)

To collect contemporary data on shorebird demography and to compare these data to historic information collected at the site. We are attempting to establish an Arctic Shorebird Demography Network patterned after the Barrow site. This is only at the beginning stages.

Ecosystems
269. Breeding biology of Steller’s eiders nesting near Barrow, Alaska

To conserve the federally listed Alaska-breeding population of Steller’s eiders through monitoring breeding, surveying populations, predator management, and analyzing the effects of management actions. Main gaps: We are only collecting data on the breeding biology of this species along the road system near Barrow, Alaska.

Ecosystems
270. US Arctic Program for Regional and International Shorebird Monitoring (PRISM) (PRISM)

To collect contemporary data on the distribution, abundance and trends in abundance of Arctic-breeding shorebirds. Main gaps: No long term funding available to continue to conduct these surveys.

Ecosystems
271. Alaska Pelagic Seabird Observer Program

Place seabird/marine mammal observers on ships of opportunity – focusing on research vessels and programs such as NOAA stock assessment surveys and NFS-funded programs. To obtain data on seabird/marine mammal distribution and abundance throughout Alaska waters, with corresponding oceanographic and biological data from other projects on the same cruises. Data to be included in syntheses as part of Bering Sea Integrated Ecosystem Research Program (BSIERP, NPRB), and will be added to the N. Pacific Pelagic Seabird Database (NPPSD).

Ecosystems
272. Koyukuk National Wildlife Refuge (KNNWR) (KNNWR)

Protect wildlife and habitat for future generations; fulfill international treaty obligations related to fish and waterfowl; provide opportunity for subsistence use by residents Main gaps: Few data prior to 1981.

Ecosystems
273. Kanuti National Wildlife Refuge (Kanuti NWR) (Kanuti NWR)

1) Annual monitoring of molting Greater White-fronted Geese (Interior refuges) 2) Waterfowl (primarily) breeding pair survey (MBM- done 1997, 2008-09) 3) Breeding Bird Survey (2 routes; annual, though not in 2009) 4) Alaska Landbird Monitoring Survey (2 plots; biennial) 5) Refuge moose population survey (annual) 6) Refuge wolf survey (annual as conditions allow; minimum census) 7) Henshaw Creek fish weir (annual; TCC = operator) 8) Stream gages (operational Oct 2009; will operate at least 6 years) 9) Snow markers (6 on refuge; checked monthly in winter; statewide??)

Climate Human health Ecosystems
274. Yukon Flats National Wildlife Refuge

To inventory and monitor resources of the Yukon Flats Basin to achieve refuge purposes.

Climate Human health Ecosystems
275. Polar Bear/Human Interaction Database (PBHIMS)

Track and analyze all bear/human conflicts for all circumpolar polar bear range states (countries). As a result of on-going and predicted future habitat loss, polar bears are expected to spend longer periods of time on land where they are susceptible to human disturbance. At the same time, human activity in coastal areas of the Arctic is increasing (e.g. oil and gas exploration, tourism) in conjunction with an increased number of nutritionally stressed bears occurring on land. The increasing trend of both polar bear and human use of coastal areas has the potential to result in increasing polar bear-human interactions. Harvest data indicates that defense of life kills have been increasing (USFWS unpublished data). To date, polar bear attacks have been rare but when they do occur, they evoke strong public reaction, especially for residents of communities within the range of polar bears. For sound management of polar bears to be implemented, and adequate protection afforded to people living, recreating, and working in polar bear country, it is imperative that polar bear managers assemble a database of critical information related to bear-human interactions. Interactions with humans may threaten polar bears by: (1) displacement from preferred habitats, such as denning, feeding and resting areas; (2) ingestion of or exposure to contaminants or toxic substances; (3) association of humans with food (food-conditioning) resulting in nuisance bears being killed due to safety concerns for local residents/workers. Polar bear managers can help maintain the current status of their polar bear populations by reducing lethal take of polar bears during bear-human interactions. To prevent escalating conflicts between polar bears and humans, bear-human interaction plans need to be developed and implemented. During the March 2009 Polar Bear Range States Meeting in Tromso, Norway the U.S. was tasked with taking the lead on developing a polar bear / human interaction initiative to address the anticipated future increase in interactions due to climate change. Tor Punsvik, Environmental Advisor, Office of The Governor of Svalbard, Norway and Dr. Terry D. DeBruyn, Polar Bear Project Leader, FWS, Alaska were requested by the Range States to develop a polar bear/human interaction database for the next Range States Meeting in Canada in 2011. It is anticipated that a draft database, populated with data from both the U.S. and Norway, will be ready by November 2009 for testing and comment by the Polar Bear Specialist Group (PBSG). The draft database will be distributed to PBSG members, comment sought, and a request made that members populate the database with pertinent polar bear/human incidents (of primary interest, initially, are records from each country that relate to the use of bear spray and fatalities (both bear and human) resulting from bear-human interactions). At a subsequent meeting of U.S. and Norway in spring 2010, the database will be updated and thereafter redistributed to the PBSG and Range State members. It is anticipated that data from all Polar Bear Range States will then be available for consolidation and validation in winter 2010 and ready to present at the Range States meeting in 2011. To ensure the success of the project, partnering with various agencies and pertinent groups in the range state countries will occur. The Polar Bear Range States parties agree on the need to develop comprehensive strategies to manage bear-human conflicts. Some existing strategies include active deterrence, reduction of attractants, and community education and outreach. Expertise developed for management of other bear species should be consulted in the development of strategies specific to polar bears. The parties agreed to exchange experiences with management of bear-human interactions. Two specific opportunities were identified to develop bear-human interaction strategies: the upcoming Bear-human Workshop in November 2009 in Canmore, Alberta, Canada and the Polar Bear Aversive Conditioning Workshop planned to be held in Alaska in 2010. The Polar Bear-Human Information Management System (PBHIMS) has been developed to standardize the collection of polar bear data across the Range States. This system provides a user-friendly data entry interface and the ability to analyze the collected data. Data stored in the system includes bear-human conflicts, bear observations, bear harvests, and bear natural history data. Scanned images of the original bear forms, narratives, reports, and photos can be attached to each incident to provide additional information that may not be captured in the system. Main gaps: Developed for use by USFWS; other range states are not using it yet.

Ecosystems Human health Oceanography
276. Marine Mammals Management: Marking Tagging & Reporting Program (MMM-MTRP) (MMM-MTRP)

(1) Monitor the subsistence and handicraft harvest of polar bears, sea otters and walrus; (2) Obtain essential biological data needed to manage; and (3) Help prevent the illegal take, trade and transport of specified raw marine mammal parts. The Marine Mammal Protection Act of 1972 allows Alaska Natives to harvest marine mammals for subsistence uses. The Marine Mammal Protection Act (pdf) requires that all sea otter and polar bear hides and skulls, and all walrus tusks be tagged by a representative of the U.S. Fish and Wildlife Service. This program is implemented through resident MTRP taggers located in coastal villages and communities throughout Alaska. There are more than 150 taggers located in about 100 villages. The information collected by the MTRP will help ensure the long-term survival of these species by monitoring the Native harvest and controlling the illegal take, trade, and transport of marine mammal parts. To find out how to contact taggers, call John Trent at 1-907-786-3815 or 1-800-362-5148. Main gaps: The MTRP harvest data are for 3 stocks of northern sea otter and, with data provided by Russian authorities, for the one stock of Pacific walrus. Polar bear harvest for the Chukchi Sea and southern Beaufort Sea polar bear stocks are for US communities only. Additional harvest occurs in Canada but is accounted for by the Inuvialuit-Inupiat Agreement of 1988. In the largest Alaska walrus harvesting communities, MTRP data are supplemented and independently assessed by a Walrus Harvest Monitoring Program (WHMP) that has existed, more or less continuously since 1960. This program also collects biological specimens. The contact for WHMP is Jonathan_Snyder@atfws.gov. Mr. Snyder is also in the Office of Marine Mammals Management, Region 7, USFWS MS 341 1011 East Tudor Road, Anchorage AK, 99503. Network type: Subsistence harvest data on polar bears and northern sea otters are collected from hunters in Alaska coastal communities.

Ecosystems Human health
277. Remote Automated Weather Stations (RAWS) (RAWS)

Support wildland fire management and protect life and property through the accurate measurement, recording and distribution of fire weather environmental data.

278. International Circumpolar Surveillance of Infectious Diseases (ICS) (ICS)

Connect public health laboratories and institutes throughout the circumpolar north for the purposes of monitor infectious diseases of concern. Main gaps: russia

Human health
279. Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) (ACRF)

The Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) is a multi-platform national scientific user facility, with instruments at fixed and varying locations around the globe for obtaining continuous field measurements of climate data. Each ACRF site uses a leading edge array of cloud- and aerosol-observing instruments to record long-term continuous atmospheric and surface properties that affect cloud formation and radiation transport through the atmosphere. The ARCF also provides shorter-term (months rather than years) measurements with its two mobile facilities (AMFs) and its aerial measurements. Network type: - Atmosphere, with a focus on the impact of clouds and aerosol on the Earth’s radiation budget. - Location: Primary site: Barrow, Alaska, 71° 19' 23.73" N, 156° 36' 56.70" W Secondary site: Atqasuk, Alaska, 70° 28' 19.11" N, 157° 24' 28.99" W - Community-based: No.

Climate Atmosphere
280. Alaska Soil Survey

More information about the following long-term observing activity will be available in due course. • Soil survey program description: http://www.ak.nrcs.usda.gov/soils/index.html • Soil climate survey program description: http://www.ak.nrcs.usda.gov/soils/SoilClimateSites/SoilClimateSites.html • For information and data, contact: Rick McClure, richard.mcclure@ak.usda.gov

Soils Ecosystems