Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 221 - 240 of 418 Next
221. SMHI Mesoscale Atmospheric Transport and Chemistry Model (MATCH)

Calculating deposition in a grid over Sweden showed the lack of information on deposition at high altitude. SMHI applied the meso scale MATCH model to calculate the deposition field and the matched model is called MATCH-Sweden. The result is found at http://www.smhi.se/cmp/jsp/polopoly.jsp?d=5640&l=sv The observations made at these stations are: Particles in air: SO4-S, NO3-N, NH4-N, Cl, Na, Ca, Mg, K Gase:s NH3-N, HNO3-N, SO2-S Deposition open field precipitation: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K Deposition in forest throughfall: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K To integrate the relatively few deposition measurement sites, SMHI has adopted the Mesoscale Atmospheric Transport and Chemistry Model (MATCH) that uses emission data, meteorological data, routines for chemical processes, and a transport model to calculate long-range transport and deposition of air pollutants (Table 4, #1.5). Time series of gridded data over Sweden for deposition of different inorganic chemical compounds calculated with the MATCH-Sweden model are available at SMHI (Appendix, Table 11). When the MATCH-Sweden model was first tested, the deposition network lacked high elevation sites. Hence, a monitoring program for deposition at higher elevations (Table 4, #1.9) was started. It consists of 4 sites in high elevation forests along the Swedish mountain ridge, where NO3, NH4, NH3, HNO3, SO2, SO4, Na, K, Ca, Mg, Cl, pH, conductivity, and amount of precipitation are analyzed on monthly accumulated precipitation samples.

Atmosphere Environmental management Pollution sources
222. Sweden EMEP air and precipitation chemistry

The subprogram main task is to check if international agreements as the UN Convention on Long Range Transboundary Air Pollution (CLTRAP) are followed. EMEP = European Monitoring and Evaluation Programme. The network comprises 10 stations, out of which three are in northern Sweden. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2, O3 Precipitation quality is monitored by samplers with lid, open only when it rains. The following compounds are measured: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Ozone near ground is analyzed every hour and is part of an European warning system PM10 is particles Metals in air and precipitation is analysed at Bredkälen only. The following elements are analyzed: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, metyl-Hg.

Atmosphere GIS Pollution sources
223. Air and Precipitation Chemistry Network (PMK)

The PMK Network is part of the national network for deposition measurements. The aim is a longterm monitoring concentration and deposition of different air transported compounds. The aim is also to generate knowledge about longterm variation in the deposition field, and to give background data from low polluted areas for calculation of pollution deposition in more polluted areas. The Air and Precipitation Chemistry Network includes about 25 sites (14 in northern Sweden) where precipitation from open accumulating samplers are collected and analyzed for pH, SO4, NO3, NH4, Cl, Ca, Mg, Na, K, conductivity, and amount of precipitation (Table 4, #1.2). At 3 sites (one in northern Sweden) precipitation is analyzed for heavy metals, mercury, and methyl-mercury (Table 4, #1.3).

Climate Pollution sources Atmosphere
224. IRF Weather station

at the Institute for Space Physics (IRF) in Kiruna, an automated weather station logging air temperature, humidity, wind, pressure, and UV-radiation has been in operation since 1996

Climate Atmosphere
225. Abisko Scientific Research Station (ANS) (ANS)

Investigations within many areas of biosciences and geosciences are carried out at the station. The emphasis of staff research is on plant ecology and meteorology. The main objectives of the ecological projects are to study the dynamics of plant populations and to identify the controlling factors at their latitudinal and altitudinal limits. The meteorological projects deal with recent climate changes in the region, and also with local variations of the microclimate in subalpine and alpine ecosystems.

Atmosphere Climate Ecosystems Environmental management
226. SLU, Faculty of Forestry, Unit for Forest Field Research, experimental forests

The Faculty of Forestry at SLU has two research stations with experimental forests, two experimental forests with permanent staff, three without permanent staff and a large number of long-term field trials. These facilities are spread over the country.

Climate Environmental management Atmosphere Ecosystems
227. International Network of Permafrost Observatories (INPO)

Coastal Module of GOOS

Ecosystems
228. Whole body measurements on reindeer herders in Finnmark, Norway

Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.

Radioactivity Indigenous people Long-range transport Radionuclides Exposure Arctic Reindeer 137Cs Whole body measurements Human health Human intake
229. AMAP 2009-2010 Core Heavy Metals and POP programme

The main aim of the project is to establish monitoring data on core species amd core parameters (ie including PCB, DDT, chlordanes, toxaphene, HCB etc. and animal ID and basic information like length, weigth, agegroup/sex assessment). In addition, a time-trend on PFCs in pilot whale has been established (since 1986).

230. Arctic Birds Breeding Conditions Survey

The Survey is aimed at improving understanding of regularities in population dynamics of Arctic terrestrial birds (in particular waterfowl) by means of collating at pan-Arctic scale information on environmental conditions on breeding areas

birds Biology Climate variability Spatial trends Terrestrial mammals Arctic Temporal trends
231. AMAP 2009 and 2010 core HM and POP programme Faroe Islands

The project is a continuation of the monitoring activities of the AMAP POPs and Heavy metals programme in marine, terrestrial and freshwater environments of the Faroe Islands. The aims of the programme is to establish data for timetrend and spatial assessments as well as providing data of importance in human health risk assessment on mercury and POPs. The programme incorporates analyses on pilot whale, cod, black guillemots from the marine environment, sheep and hare from the terrestrial environment and arctic char from the freshwater environment. The compounds analysed are "legacy" POPs and mercury, cadmium and selenium. In addition, a retrospective analyses of PFOS in pilot whale tissues going back as far as possible (ie.1986) is part of the project.

Organochlorines PCBs Heavy metals Fish Long-range transport Spatial trends Terrestrial mammals Exposure Persistent organic pollutants (POPs) Seabirds Pesticides Temporal trends Marine mammals
232. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems
233. Physics, Chemistry and Biology of Atmospheric Composition and Climate Change, Finnish Center of Excellence

The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.

Atmospheric processes UV radiation Climate Atmosphere
234. ACCENT Atmospheric Composition Change, the European Network of Excellence

The overall goals of ACCENT are to promote a common European strategy for research on atmospheric composition change, to develop and maintain durable means of communication and collaboration within the European scientific community, to facilitate this research and to optimise two-way interactions with policy-makers and the general public. ACCENT will establish Europe as an international leader in atmospheric composition change research, able to steer research agendas through its involvement in major international programmes. ACCENT furthermore aims to become the authoritative voice in Europe on issues dealing with atmospheric composition change and sustainability.

Pathways Atmospheric processes Long-range transport (biosphere-atmosphere) interaction Contaminant transport Modelling Data management Atmosphere
235. Occurence of "new" contaminants in marine biota in Greenland and the Faroe Islands

In addition to the persistent organic pollutants (POPs) analysed in former monitoring projects, other compounds of concern have been identified by the international community (e.g. OSPAR, AMAP), and analytical methods have been developed. These compounds include brominated flame retardants (BFRs), phthalates, polychlorinated naphthalenes (PCNs), perfluorooctane sulfonate (PFOS) and synthetic musk compounds. The aim of this project is to screen the marine environment of East and West Greenland and the Faroe Islands for these compounds. The analyses will be based on existing samples of pilot whale and fulmars from the Faroe Islands as well as marine sediments, shorthorn sculpins, ringed seals, minke whales from West Greenland and shorthorn sculpins, ringed seals and polar bears from East Greenland. As several trophic levels of the marine Arctic food chain are taken into account, the project will also result in information on the bioaccumulation of these compounds.

Organochlorines Fish Spatial trends Polar bear Persistent organic pollutants (POPs) Seabirds Sediments Marine mammals
236. A survey of contaminants in peregrine falcon eggs from South Greenland

The primary scope of the project is to investigate the long-term time trend of brominated flame retardants for the contamination and possible effects in relation to the contamination of peregrine falcon eggs. The contamination by the conventional POP compounds will also be identified. Totally 36 out of 53 collected eggs will be analysed. Time trend analysis will be performed based on a multi-variant methodology for a period of 18 years. The result will contribute to the assessment of organic pollutant contaminationm in Greenland including the effect on vulnerable wild life.

Peregrine falcon Biological effects Organochlorines PCBs Persistent organic pollutants (POPs) Pesticides Temporal trends
237. Nuuk Basic-Pilot study

The Nuuk-Basic project aims to establish a climate monitoring programme on the westcoast of Greenland. During two workshops, one being in Nuuk with field survey, framework for a future climate monitoring programme will be established. The programme builds on the concept and institutions already performing climate monitoring in NE-Greenland through ZERO (Zackenberg Ecological Research Operations).

Biological effects Climate change Biodiversity Ecosystems
238. Contaminants in polar bears

Polar bears are at the top of the arctic marine food chain. Owing to the high lipid content of their diet, polar bears appear particularly prone to bioaccumulate organochlorines. Polar bears from East Greenland and Svalbard have higher contaminant levels than polar bears elsewhere in the Arctic. Levels of PCBs in these areas might negatively affect reproduction and survival. So far more than 130 polar bear samples have been collected since 1999. These samples are being analysed for organochlorines and pathological effects.

Organochlorines PCBs Heavy metals Polar bear Persistent organic pollutants (POPs) Reproduction Pesticides Temporal trends Marine mammals
239. AMAP Time Trend Programme

The project includes analyses of PCBs, organochlorine pesticides, chlordanes and brominated flame retardants in seals, birds and fish from Greenland. The programme covers a period of five years to investigate temporal trends in the concentration levels of organic pollutants in Greenland.

Organochlorines Heavy metals Persistent organic pollutants (POPs) Pesticides Temporal trends
240. ZERO-database

The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.

Biological effects Hydrography Geophysics Climate Polar bear GIS Sediments Marine mammals Biology Populations Soils UV radiation Fish Discharges Sea ice Climate change Terrestrial mammals Ice Biodiversity River ice Arctic Seabirds Geochemistry Reproduction Permafrost Ecosystems