Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 221 - 240 of 955 Next
221. Arctic Oceanographic Observations

Observations of the Arctic Ocean have been made since the 1800s at varying levels of intensity. The objective is to gain a better understanding of the physical and chemical composition of Arctic waters, the circulation of the waters within the Arctic Ocean, and flows into and out of the Arctic Ocean. Physical observations are conducted on properties of the water column including ocean temperature, sea surface temperature, salinity, pH, carbon, changes in ice coverage and extent, hydrographic measurements, nutrients, etc. Surface drifters either embedded in the ice, or (lately) able to float and operate in ice infested waters, provide measurements of a limited number of surface ocean and meteorological variables. . Additional observations are obtained on ocean currents, waves and tides. Biological observations are captured within a separate inventory item titled “Arctic Marine Biodiversity Monitoring”. Recently, a focus has been on increasing understanding of the impacts of climate change on Arctic waters (e.g., increasing temperature, decreasing pH, decreasing salinity, changing ice conditions, etc.). Data is gathered by ship with in situ measurements, deployment of moorings and buoys, helicopters (e.g. for ice measurements), and satellites (e.g. sea surface temperature). Main gaps: Large geographic areas of the Arctic are not covered regularly. Network type: - Thematical observations: of all oceanographic parameters - Field stations: Research ships and ice breakers of the Canadian Coast Guard; other ships of opportunity as available; moorings and buoys - Community based observations: - Coordination: National coordination of the program provided within Fisheries and Oceans Canada, and the National Centre for Arctic Aquatic Research Excellence (NCAARE)

Atmosphere Oceanography
222. Lidar Arctic Monitoring of the Atmosphere (LAMA)

Station realizes optical active remote sensing using multiwavelength elastic and Raman scattering lidar. It gives a view to the atmospheric stratification and aerosol concentration. By spatial and time localization of the higher aerosol concentration evidence there is possible determination of source of aerosol origin using HYSPLIT backward trajectory model. Station is also member of AERONET (Aerosol Robotic Network) within NASA and performing observation of solar radiation for determination of atmospheric optical properties.

Atmosphere
223. Monitoring and modelling of a glaciated terrestrial ecosystem and land ocean fluxes to the adjacent fjord system (Sermilik Station, East Greenland)

Monitoring and modelling of a glaciated terrestrial ecosystem and land ocean fluxes to the adjacent fjord system. Main gaps: - Basic funding for long-term monitoring - Basic funding for data and data base handling A few short gaps due to sensor failures

Atmosphere Ecosystems
224. Screening of potential new hazardous substances in Norway

The aim of the programme is to obtain a snapshot of the occurrence of potentially hazardous substances in the environment, both in regions most likely to be polluted as well as in some very pristine environments. The focus is on little known , anthropogenic substances and their derivates, which are either used in high volumes or are likely to be persistent and hazardous to humans and other organisms. If substances being screened are found in significant amounts this may result in further investigations or monitoring on national level. The results from the screening can be used when analysing possible environmental effects of the selected substances, and to assess whether they pose a risk to the environment or not. The data are used as input to EU chemical eavluation processes and to the UN Stockholm convention. The screening results are valuable when data on chemicals are needed within the REACH-system in Europe. Locations: Varying, according to properties of the substances. Samples from both hot-spot and remote sites are included. Geographical coverage (countries): Norway, including Bear Island and Spitsbergen and Norwegian seas. The Nordic countries are cooperating on screening information exchange and studies, see net site and brochure: http://nordicscreening.org/ http://nordicscreening.org/index.php?module=Pagesetter&func=viewpub&tid=10&pid=1

Atmosphere Human health
225. Radioactivity in air

To monitor radioactivity in the air

Atmosphere
226. Monitoring of commercial fish stocks in the Barents Sea

This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Ingolf Røttingen, ingolf.rottingen@imr.no) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: - Determine amount and distribution of commercial fish stocks - Describe abundance of biodiversity (benthos, fish, whale, zooplankton, phytoplankton, shellfish) - Determine annual variation in commercial fish biomass and feeding conditions for these fish species. Location: Southern and central Barents Sea – mainly in Norwegian sector. When operational: Area surveys are conducted throughout the year. The number of vessels in each survey differs, not only between surveys but may also change from year to year for the same survey. However, most surveys are conducted with only one vessel. It is not possible to measure all ecosystem components during each survey. Effort is always put on measuring as many species as possible on each survey, but available time put restrictions on what is possible to accomplish. Also, an investigation should not take too long time in order to give a synoptic picture of the conditions. Therefore the surveys must focus on a specific set of species. Other measured species may therefore not have optimal coverage and thereby increased uncertainty, but will still give important information. An overview of the measured species on each main survey is given in the table above. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. Assessment of commercial stocks are conducted through ICES. Geographical coverage: Norwegian EEZ of Barents Sea including waters around Svalbard. The joint programme with Russia covers much of the Barents Sea (southern, central, and much of northern part in fall). Network type: Surveys, annual stock assessments

Ecosystems
227. Monitoring of zooplankton biomass and composition in the Barents Sea

This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Tor Knutsen, tor.knutsen@imr.no ) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Determine amount and distribution of zooplankton biomass (in three size fractions). 2. Describe abundance of dominant zooplankton species. 3. Determine annual variation in zooplankton biomass and feeding conditions of planktonfeeding fishes. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO).

Ecosystems
228. Monitoring of ocean climate of the Barents Sea

This is a cooperation between Institute of Marine Research (IMR) in Norway (Contact person Randi Ingvaldsen, randi.ingvaldsen@imr.no) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Describe water mass distribution and properties 2. Document ocean climate variability as part of long time series 3. Relate ocean climate variability to variation in recruitment, growth, condition and size of commercial fish stocks Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. The current meter moorings are shifted once a year.

Ecosystems
229. Radioactivity in the Marine Environment (RAME) and Monitoring of terrestrial and freshwater systems (RAME)

- To document levels and trends of radioactivity in the environment - Basis for reports to international organisations (mainly OSPAR) - Inform authorities, media and the public in general about status of radioactive contamination

Hydrography Oceanography Ecosystems
230. Coordinated Environmental Monitoring Programme (CEMP) (CEMP)

To assess the effects, levels and trends of hazardous substances in marine sediment and biota. The indicator organisms include blue mussel, dogwhelk, cod and plaice. The monitoring sites are mostly coastal and the frequency of sampling is mostly annually for biota and every 10-15 years for sediment. Main gaps: Protected areas and offshore monitoring are generally not included under the CEMP but offshore monitoring is somewhat covered by. IMR/NIFES programmes. Not all substances under EU’s Water Frame Work Directive and Marine Strategy Directive are monitored regularly. Biological effects monitoring is lacking except for IMPOSEX investigations.

231. Riverine inputs and direct discharges to Norwegian coastal waters (RID) (RID)

The main objective of the RID monitoring programme is to monitor and assess the riverine and direct inputs of selected pollutants to the Norwegian part of OSPAR’s Maritime Area. The entire study area (i.e. main Norwegian land area) is divided into the following four coastal areas/sub-regions: Skagerak, North Sea, Norwegian Sea, and Barents Sea. The monitoring in rivers is carried out in 10 so-called ‘main rivers’ with monthly sampling; and 36 so-called ‘tributary rivers’ with sampling 4 times a year. The catchment areas of these 46 rivers constitute about 50% of the Norwegian area draining to the Convention waters. The inputs from the remaining areas are estimatedby the Teotil model. This includes direct discharges from wastewater treatment plants, industry and fish farming.

232. Monitoring environmental pollutants in freshwater fish in Norway

To detect changes in concentrations of POPs in freshwater fish due to changes in atmospheric or local anthropogenic input.

233. Monitoring of long-range transboundary air pollution, hazardous substances in lakes

To detect changes in concentrations of metals and POPs in lake sediments

234. Monitoring of long-range transboundary air pollution, effects in water

To detect changes in concentrations of chemical parameters in surface waters (rivers and lakes) related to changes in anthropogenic deposition input from longrange transboundary air pollution, in particular sulpur and nitrogen. The results are used as a basis to understand the biological responses to changes in acid deposition input.

235. Air deposition of heavy metals in Norway – Monitoring in mosses

Survey trends in deposition of long range transported heavy metals and other elements in Norway. For this purpose concentrations in mosses are measured. In year 2000 and 2005 extra samples were taken in areas with metallurgic industry to map the local level of deposition.

Atmosphere Ecosystems
236. Alaska Surveillance, Epidemiology and End Results (SEER)

Within the State of Alaska, the Alaska Surveillance, Epidemiology and End Results (SEER) program collects and publishes cancer data as part of the National Cancer Institute’s overall SEER program, and the Alaska Native Stroke Registry is a project to increase the understanding of stroke in Alaska Natives, with the goal of improving stroke care. Circumpolar linkage of such networks would facilitate international collaboration, international standardization of data collection international comparison of comparable data, thereby greatly adding to our knowledge of Arctic health, and enhancing design of treatment and prevention.

Human health
237. Alaska Soil Survey

The USDA also manages the Alaska Soil Survey, a scientific inventory of soil resources in 31 different regions of the state. The data are used for making maps, identifying physical and chemical properties of soils, and supplying current information on potential uses and limitations of soils. The Soil Survey contributes to the Natural Resources Inven-tory that involves monitoring of the changes and trends in natural resource use and condition.

Ecosystems
238. NASA Hydrology

NASA satellites (Figure 13) support an extensive Global Water Cycle science focus area and contribute to high accuracy, stable, sustained observations and associated modeling for terrestrial hydrology and cryosphere studies. Derived geophysical products for terrestrial hydrology and cryosphere are available from the NSIDC’s Distributed Active Archive Center (DAAC). They include: soil moisture and snow water equivalent from AMSR-E; Greenland ice sheet altimetry and global land surface altimetry from ICESat/GLAS; snow cover extent/area from MODIS; surface albedo and temperature from AVHRR Pathfinder. SAR data obtained from a variety of foreign satellites since 1991 are archived at the ASF DAAC. SAR data provide opportunities for change detection, including interferometric SAR (InSAR) studies of glacier and ice sheet surface elevation and dynamics (ice velocity maps), land surface elevation, and soil moisture. GRACE has been used to determine the mass loss from the Greenland ice sheet and from glaciers in southeast Alaska. The surface elevation of the Greenland ice sheet is mapped using ICESat, and the Advanced Spaceborne Thermal Emission and Reflec¬tion Radiometer (ASTER) is used to acquire imagery and topography of the ice sheet.

Ecosystems
239. DOD Permafrost observing activities

DOD observing activities related to Arctic terrestrial hydrology and cryosphere focus mainly on perma¬frost at two facilities maintained by CRREL: the Permafrost Tunnel at Fox, Alaska, and the Permafrost Research Station at Fairbanks, Alaska. The permafrost tunnel is primarily a research facility, where ground temperatures have been monitored continuously since 1963. At the Permafrost Research Station, ground and air temperatures have been monitored intermittently since 1947; continuous measure¬ments resumed in 2006 and a Circumpolar Active Layer Monitoring (CALM) site was added in 2004. CRREL also monitors shallow ground temperatures at research sites at Shishmaref and Fort Wainwright, Alaska.

240. EPA National Aquatic Resource Survey (NARS)

The EPA National Aquatic Resource Survey (NARS) assesses the condition of the Nation’s aquatic resources, including those in Alaska. NARS is an integrated and comprehensive program that monitors five different categories of aquatic resources: coasts, streams, rivers, lakes, and wetlands. Each of the five aquatic resource categories sample specific indicators to provide information on the physical, chemical and biological condition of the resource. Examples include: coasts (water chemistry, sediment quality, benthic condition, fish tissue contaminants, habitat condition); streams (benthic condition, nutrients, sedimentation, fish habitat, riparian vegetation); rivers (fish, benthos, periphyton, nutrients, sedi-mentation, recreational indicators); lakes, including ponds and reservoirs (zooplankton, phytoplankton, sediment diatoms, sediment mercury, nutrients, microcystin, enterococcus, fish tissue chemistry); wetlands (to be determined). Sampling was conducted for the National Coastal Assessment in south central Alaska in 2002, in southeast Alaska in 2004, and the Aleutians in 2006-2007. Pilot surveys were conducted for the National Wadeable Streams Survey in the Tanana basin in 2004-2005, and for the National Wadeable Lakes Survey in the Kenai region in 2007-2008.

Ecosystems