The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 21 - 40 of 82 Next
21. ISACCO(Ionospheric Scintillations Arctic Campaign Coordinated Observations)

The polar ionosphere is sensible to the enhancement of the electromagnetic radiation and energetic particles coming from the Sun expecially around a maximum of solar activity . Some typical phenomena can occur such as, among the others, geomagnetic storms, sub-storms and ionospheric irregularities. In this frame the high latitude ionosphere may become highly turbulent showing the presence of small-scale (from centimetres to meters) structures or irregularities imbedded in the large-scale (tens of kilometers) ambient ionosphere. These irregularities produce short term phase and amplitude fluctuations in the carrier of the radio waves which pass through them. These effects are commonly called Amplitude and Phase Ionospheric Scintillations that can affect the reliability of GPS navigational systems and satellite communications. The goal of this proposal is to contribute to the understanding of the physical mechanisms responsible of the ionospheric scintillations as well as to data collecting for nowcasting/forecasting purposes at high latitude. As the scarceness of polar observations, the specific site near Ny-Ålesund is of particular experimental interest.

Mapping Geophysics Modelling Arctic Atmosphere ionospheric scintillation and TEC (Total Electron Content) monitoring.
22. Long distance pollen transport in the Arctic: 1. Greenland

The submitted proposal aims to perform the monitoring of the pollen rain in the Greenland atmosphere by distinguishing the local pollen production, relatively low, from pollen grains originating from other Arctic areas. A regular monitoring of the atmospheric pollen content must be performed in order to evaluate the amount emitted and characterise the seasonality of the emission. A comparison with air mass trajectories must allow the modelling of long distance transport

Biology Climate variability Spatial trends Modelling Biodiversity Data management pollen Atmosphere Ecosystems
23. Tritium as a 'natural' tracer of air masses

It is well known that tritium, the hydrogen isotope 3H, is part of nuclear weapons and was spread all over the world as a consequence of nuclear bomb explosions. Rarely it is regarded as being “natural”, but actually it is. Long time before humans appeared tritium already existed on earth for a long time. This “natural” tritium is the product of cosmic radiation interactions with the atmosphere (mainly N-14). Nowadays this kind of tritium production contributes only to a small extent to the atmospheric tritium. Tritium is radioactive and decays with a half-life of 4.500 days under the emission of a very low energetic beta-particle. In the atmosphere tritium can be found within water vapour (HTO), hydrogen (HT) or methane (CH3T). Yet, the main portion of tritium released during the 1960’s has already been eliminated from the atmosphere by radioactive decay and precipitation. A large amount is captured in the oceans. Indeed, today anthropogenic sources releasing tritium to the environment can still be found. At the end of the 1980‘s contacts with research institutes in former Eastern Bloc countries lead to the idea of establishing a tritium sampling network. The primary goal was the documentation of atmospheric tritium. Statements about potential releases and their sources and the radiation hazards associated should be obtained. Furthermore it might help with the verification of meteorological models. To acquire comparable results a standardised sampling device was developed. This system simultaneously collects samples of air humidity and hydrogen. It was planned to enlist the gathered data in a database and to use them for the following subjects: • observation of local and global tritium transport in the atmosphere • detecting tritium releases and locating their sources • radiation risk evaluation • examining the transmutation of elemental hydrogen into water under natural conditions With the breakdown of the Eastern Bloc the idea of this common network faded away. At the moment only at two stations in Austria air humidity and air hydrogen are collected as planned: since 1991 at Research Center Arsenal in Vienna and since 1999 at Hoher Sonnblick a high mountain station (3160 m). Currently we are working together with the IAEA on a project with the aim to find a model, which helps evaluating weather conditions and in particular the climatic processes. As for these investigations the stable isotopes H-2 and O-18 are used and the currently used device introduces fractionation a new method is developed right now. Since the specific tritium activity concentration is not affected by air pressure or humidity the values for the two locations can be compared directly. In general the measured values are similar but sometimes differ noticeably. For example a peak value for the tritium activity concentration observed during March 2000 at Sonnblick was not noticed in Vienna. In this context the attempt should be made to analyse the air flows with the help of trajectories. The tritium activity concentration of air humidity is primarily determined by the amount of humidity itself. Therefore the concentration is directly linked to the seasons. Only significant changes in the specific tritium activity concentration can be detected by the use of the tritium activity concentration. Seasonal variations within the tritium activity concentration of hydrogen could not be observed. The values vary around 10 mBq/m3.

Atmospheric processes Radioactivity Long-range transport Climate Contaminant transport Radionuclides Modelling Atmosphere
24. Cloud Effects on UV Irradiance Measurements (CEUVIM)

The goal of this project is to find the relationships between the UV solar spectral irradiances sampled at ground level in different cloudy situations. This information will be useful for a double target: to a better tuning of the UV Green model outputs and to evaluate the effects of the solar UV radiation on biological target. A second target is to have information about the cloud effect on computing the Umkehr model output (vertical Ozone profiles). This goal will be carried out installing in Ny-Ålesund a spectrophotometer Brewer to sample the UV irradiance synchronous with an automatic photo-camera taking pictures of sky. An analytical study of the two kinds of data allows finding the relationships searched.

Atmospheric processes Ozone UV solar radiation UV radiation Climate change Atmosphere Clouds effects
25. ESAC I and II: Experimental Studies of Atmospheric Changes, 1st and 2nd phase

The main objectives of ESAC II are the following: (1) Extend and improve the important existing Belgian contribution in atmospheric research started in the 50s, recognized internationally. (2) Investigate the chemistry of the atmosphere, to detect and understand its evolution, mainly with experimental means. Special attention will be paid to the evolution of the ozone layer and chemical species and processes with an impact on climate changes. (3) Support the Belgian policies and decisions regarding the Amendments to: - the Montreal Protocol on Substances that deplete the Ozone Layer; - the Kyoto Protocol on Greenhouse Gases (GHG) emissions.

Atmospheric processes Sources Ozone UV radiation Climate variability Belgian contribution in atmospheric research Spatial trends Pollution sources Montreal & Kyoto Protocols Climate change Modelling Emissions Atmosphere Temporal trends
26. EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology

EARLINET will establish a quantitative comprehensive statistical database of the horizontal, vertical, and temporal distribution of aerosols on a continental scale. The goal is to provide aerosol data with unbiased sampling, for important selected processes, and air-mass history, together with comprehensive analyses of these data. The objectives will be reached by implementing a network of 21 stations distributed over most of Europe, using advanced quantitative laser remote sensing to directly measure the vertical distribution of aerosols, supported by a suite of more conventional observations. Special care will be taken to assure data quality, including intercomparisons at instrument and evaluation levels. A major part of the measurements will be performed according to a fixed schedule to provide an unbiased statistically significant data set. Additional measurements will be performed to specifically address important processes that are localised either in space or time. Back-trajectories derived from operational weather prediction models will be used to characterise the history of the observed air parcels, accounting explicitly for the vertical distribution.

Atmospheric processes Climate variability Spatial trends Climate change Data management Atmosphere Temporal trends
27. SOGE: System for Observation of halogenated Greenhouse gases in Europe

SOGE is an integrated system for observation of halogenated greenhouse gases in Europe. There are two objectives: (1) To develop a new cost-effective long-term European observation system for halocarbons. The results will be in support of the Kyoto and the Montreal protocols,in assessing the compliance of European regions with the protocol requirements. In particular the observation system will be set up to: - detect trends in the concentrations of greenhouse active and ozone-destroying halocarbons; - verify reported emissions and validate emission inventories; - develop observational capacity for all halocarbons included in the Kyoto protocol (PFC, SF6) for which this is presently not yet existing; - develop a strategy for a cost-effective long-term observation system for halocarbons in Europe. (2) To predict and assess impacts of the halocarbons on the climate and on the ozone layer. This implies extensive exploitation of existing data. The impact assessment will be aimed at providing guidance for development of the Kyoto protocol and to the further development of the Montreal protocol mendments, by: - modelling impacts of halocarbons on radiative forcing and their relative importance for climate change; - modelling impacts of emissions of CFCs and HCFCs on the ozone layer.

Atmospheric processes Sources Ozone Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends
28. QUILT: Quantification and Interpretation of Long-Term UV-Vis Observations of the Stratosphere

The aim of QUILT is to optimise the exploitation of the existing European UV-visible monitoring systems by which O3 and the related free radicals NO2, BrO and OClO can be measured. These monitoring systems include ground-based, balloon and satellite observations. QUILT is providing an assessment of the chemical ozone loss over the last decade and through 2000-2003. This is achieved through analysis improvements, consolidation of existing datasets and near real time integrations with chemical transport models.

Atmospheric processes Sources Ozone Stratospheric Ozone Montreal Protocol Climate variability Spatial trends Pollution sources UV-Visible Remote Sensing Climate change Modelling Emissions Atmosphere Temporal trends Satellite Validation
29. COSE: Compilation of atmospheric Observations in support of Satellite measurements over Europe

The overall objective of COSE is to provide the Earth Observation (EO) user community with a validated, consistent and well-documented data set of mainly stratospheric constituent columns and/or profiles, by co-ordination of ground-based observations at existing stations in Europe. The data set builds on past and ongoing time series, and will be archived in a dedicated database for immediate and future exploitation, e.g., satellite validation activities, data assimilation and scientific studies. Active participation of some representative EO customers will assure that the delivered data sets come up to their requirements.

Atmospheric processes Sources Ozone network observations database Climate variability Atmospheric chemistry monitoring Spatial trends Pollution sources Climate change Modelling Emissions data documentation and user exploitation Data management Atmosphere Temporal trends satellite validation
30. Bioturbation by macrobenthic functional group. Interaction, modeling and effects on sediment biogeochemistry

In order to improve and calibrate each elementary model an the global bioturbation model, data from laboratory experiments involving different more or less complex nacrobentihic communities (represented by different bioturbation functional groups) are nedded.

31. UFTIR: Time Series of Upper Free Troposphere observations from a European ground-based FTIR network

The main specific objectives of UFTIR are: (1) To revise and homogenise the analyses of available experimental data for providing consistent time series of distinct tropospheric and stratospheric abundances of the target gases using new inversion algorithms. A common strategy for retrieval and characterisation of the vertical distributions of the target gases from FTIR ground-based measurements will be established. (2) To provide quantitative trends and associated uncertainties for the target gases over about the last decade, as a function of latitude throughout Western Europe, focusing on the troposphere. (3) To integrate the data in model assessments of the evolutions of tropospheric abundances. The measured burden and changes of the tropospheric gases will be compared with 3D model simulations, in order to help developing the latter, assist in explaining potential causes for the observed changes and to assess the consistencies between the trends at the surface to the free troposphere and lowermost stratosphere, and the agreement with known evolutions of emissions. UFTIR will make the community prepared to deliver tropospheric data for validation and synergistic exploitation of new satellite experiments like ENVISAT.

Atmospheric processes Sources Ozone FTIR Climate variability Spatial trends Pollution sources Climate change Modelling Emissions Atmosphere Temporal trends profile inversions
32. Millimetre wave radiometer for stratospheric trace gas measurements

A millimeter wave radiometer is started operation at the Swedish Institute of Space Physics, Kiruna, Sweden. The location of the instrument (67.8 N, 20.4 E) allows continuous observation of the evolution of ozone and ozone related trace gases in the Arctic polar stratosphere. It is designed for measurements of thermal emission lines around 204 Ghz. At this frequency observations include of ozone, chlorine monoxide, nitrous oxide, and nitric acid.

Ozone Geophysics Climate Modelling Arctic Atmosphere Temporal trends
33. Differential Optical Absorption Spectrometer

The DOAS instrument consists of grating spectrometer covering the visible and near ultraviolet spectral region. Zenith-scattered sunlight is collected by simple one-lens telescopes and fed via optical fiber bundles into the spectrometers, where atmospheric absorption spectra are obtained. The instrument runs automatically. Total column densities of the stratospheric trace species ozone, NO2, BrO, and OClO are retrieved from the spectra using the DOAS algorithm. These are species that play a major role in ozone chemistry, either by themselves in ozone destruction (BrO) or as indicators of chlorine activation/deactivation (OClO). The chemistry and dynamics of ozone destruction is investigated, e.g. with respect to the location of the polar vortex during the winter. The instrument is also useful for detection of polar stratospheric clouds using the zenith-sky colour index method.

Ozone Geophysics Modelling Arctic Atmosphere Temporal trends
34. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
35. Fourier Transform Infra-Red spectrometry

FT-IR spectrometers are capable to quantifiy the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC-22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS Selected research topics and activities: chemical ozone depletion by observation of key species (O3, ClONO2, HNO3, HCl, ..) details of the ozone formation process by isotopic studies in ozone profile retrieval to detect dynamical changes transport studies of chemical tracers and tropospheric pollutants satellite validation

Atmospheric processes Ozone Organochlorines Geophysics chlorofluorocarbons (CFC) Modelling Emissions Arctic Atmosphere Temporal trends
36. Long-Term and Solar Variability effects in the Upper Atmosphere

Objective: to determine how solar activity influences temperatures, winds, electric currents and minor constituents and to allow possible anthropogenic influences to be determined. Uses primarily measurements by the ESRAD and EISCAT radars, plus ground-based and balloon-borne measurements of atmospheric electric fields and currents.

Atmospheric processes Noctilucent clouds Geophysics Climate variability Solar Proton Events Climate Climate change Modelling Emissions Arctic Atmosphere Polar mesospheric summer echoes (PMSE) Temporal trends
37. Seal studies in Kongsfjorden 2003

Seals studies

Biology Marine mammals
38. Time geography analysis of tourist behaviors on wild and protect area (Abisko national park)

The aim of the project is to investigate the behavior and perception of people who consume natural area for leisur and recreational time. We want to develop simulation tool based on multi reactive system and agent based modelling. The work we want to do on abisko national park is to understand behaviors and perceptions of tourist and local people to calibrate the model. Methodology : inqueries, interviews and tracking people in the park. The objective of the research is to bring to space managers an efficient tool to forecast reactions about their policies. In the same time, we want improve the theoritical field by showing an investigation on microscale interaction is able to shown effects on the whole system and help for emergencing process of structures at macroscale.

39. Effects of UV-B radiation on Microbial communities in Kongsfjorden

Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.

Biological effects Ozone Biology UV radiation Heavy metals Environmental management Exposure Arctic Model ecosystem Ecosystems
40. RADNOR - Radioactive dose assessment improvements for the Nordic marine environment: Transport and environmental impact of technetium 99 (99Tc) in marine ecosystems

Radioactivity in the Arctic environment is a central topic within environmental pollution issues. Increased discharges of technetium-99 (99Tc) from the nuclear fuel reprocessing plant Sellafield to the Irish Sea has caused public concerns in Norway. This project (acronym “RADNOR”) includes model and monitoring assessments and improvements, assessment of current and novel abiotic and biotic dose parameters and dose calculations and use of realistic climatic background scenarios in order to assess corresponding consequences for transport of radioactive pollutants. RADNOR consists of three main components: part 1, the determination of levels and time series of 99Tc in benthic and pelagic food webs; part 2, containing working packages on improvements to the understanding of site-specific and time-dependent sediment-water interactions (KD), kinetics of accumulation (CF) and body distribution in marine organisms, including contaminated products for the alginate industry and part 3, dealing with model hindcasts and observations for spreading of 99Tc from the Sellafield nuclear reprocessing plant during the 1990s and improvement of the NRPA dose assessment box model. From the model outputs, doses to man and environment will be calculated resulting in a valuable database for use within environmental management and for decision makers.

distribution coefficients (KD) RADNOR Long-range transport Spatial trends Contaminant transport concentration factors (CF) Radionuclides Modelling Oceanography Arctic Food webs Sediments Temporal trends Human intake Technetium 99