Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 201 - 216 of 216
201. Decision-Making and Diet in the North: Balancing the Physical, Economic and Social Components

Specifically, this project aims to: 1. Review and organize the reported social and cultural benefits and risks associated with a traditional diet and related activities (hunting, preparation, consumption); 2. Develop and apply a survey tool to increase our understanding of the determinants of diet behavior; 3. Develop a conceptual framework for the ordered presentation of this information; 4. Link this framework with those organizing information on health and economic benefits and risks associated with traditional foods.

Indigenous people Arctic Diet Human health
202. Chemical Analysis of Toxaphene, PCB and Chlorinated Pesticides.

The aim of the project is to develop a method for analysis of toxaphene in biota from the marine environment. The project includes a modification/improvement of the method of the chemical analysis of PCBs and cholrinated pesticides used at the Danish Environmental Research Institute.

PCBs Fish Toxaphene Exposure Arctic Persistent organic pollutants (POPs) Seabirds Data management Pesticides Gas Chromatography Negative Ionisation Mass Spectroscopy
203. Quality Assurance of AMAP data

The aim of this project is to conduct quality assurance on the data of organic contaminants obtained in the Greenland / Faroe Islands / Denmark part of the AMAP projects.

Organochlorines PCBs Fish Arctic Persistent organic pollutants (POPs) Seabirds Data management Marine mammals
204. Brominated Flame Retardants in Greenland

The aim of the project is to develop a method for chemical analysis of brominated flame retardants in marine biota. Furthermore their will be a litterature study of the concentrations of brominated flame retardants in the Arctic.

Brominated Flame Retardants Exposure Arctic Seabirds Temporal trends
205. Effects and Trends of POPs on Polar Bears

LONG TERM: Determine the effects, at the individual and population level, of persistent organic pollutants (POPs) and their metabolites in the polar bear; determine trend of POPs in the Arctic marine environment using polar bear tissues as a biomonitor. SHORT TERM: a. Determine 10-year temporal trends of POPs in the Hudson Bay Sub-Arctic Ecosystem from 1990-1989 by analysis of archived polar bear biopsy samples, including changes in enantiomeric composition of -HCH and chlordane compounds and ratio of -HCH/-HCH (cross-referenced to separate proposal on HCHs). b. Determine if there is selective tissue distribution of the enantiomers of chiral contaminants in polar bears, which may influence target organ toxicity, by analysis of archived polar bear samples. c. Determine the endocrine disrupting effect of POPs on testosterone and PCB metabolite profiles by in vitro metabolism studies using polar bear liver microsomes. d. In collaboration with CWS P&N Region, the Norwegian Polar Institute and the Norwegian Veterinary Institute, determine the immunotoxic effects of PCBs and other organochlorines in polar bears throughout a gradient of exposure (Hudson Bay, low; Svalbard, high). e. Determine the effects of hydroxy-PCBs on circulating thyroid hormone and vitamin A concentrations.

Biological effects Organochlorines PCBs Long-range transport Spatial trends Pollution sources Terrestrial mammals Polar bear Exposure Arctic Persistent organic pollutants (POPs) Dioxins/furans Temporal trends Marine mammals
206. Contaminants in arctic sea ducks

To examine concentrations and biological effects of selected trace elements in king and common eiders from various locations in the Canadian arctic.

Biological effects endocrine disruption Heavy metals immune function king eiders Arctic Seabirds common eiders sea ducks
207. Monitoring and Modelling of Atmospheric Pollution in Greenland

In 2000 it is proposed to operate an atmospheric programme consisting of a monitoring and a modelling part and composed of 3 programme modules. The monitoring programme consists of two parts. I. It is proposed to continue the weekly measurements of acidifying components and heavy metals at Station Nord in north-east Greenland for assessment of atmospheric levels and trends. The measuring programme includes also highly time resolved measurements of Ozone and of total gaseous Mercury (TGM). The results will also be used for continued development and verification of the transport model calculations. Receptor modelling of the pollution composition will be used for identification and quantification of the source types that influence the atmospheric pollution in north-east Greenland. Comparison of the two sets of modelling results is expected to give better models. II. The purpose of the project is the operation of a permanent air monitoring programme in the populated West Greenland at a location which is representative for transboundary air pollution. The most promising sites are located in the Disko Bay area and in the vicinity of Nuuk. The objectives are to obtain data on the concentration levels of air pollutants that can be used for assessing seasonal variations and trends and for studying long range transport of pollutants mainly from North America to West Greenland. The purpose is further to provide data for development and improvement of long range transport models that can be used to identify the origin of the pollution and its transport pathways. The results from measurements and model calculations will be used to assess the magnitude of deposition to sea and land in this populated region of Greenland. III. In the proposed modelling programme the operation, application and maintenance of the current basic hemispheric model will be continued. Results on origin, transport, and deposition of contaminants on land and sea surfaces in the Arctic are essential for interpretation and understanding the Arctic air pollution. The model will be developed to improve the spatial and temporal resolutions, as well as the accuracy by including physically and mathematically better descriptions of the key processes treated in the model. The work to expand the model to include also non-volatile heavy metals, such as Cadmium and Lead on an hemispheric scale will be continued. Since the atmospheric chemistry of Ozone and Mercury seem to be strongly connected in the Arctic it is planned to continue the development and testing of a model module for hemispheric transport and chemistry for ozone and mercury to assess the origin and fate of this highly toxic metal in the Arctic.

Atmospheric processes Atmospheric Pathways Ozone Arctic haze Long-range transport Acidification Pollution sources Modelling Emissions Arctic Atmospheric Deposition Atmosphere
208. Mercury Measurements at Amderma, Russia

This project aims to establish continuous Total Gaseous Mercury (TGM) measurements at Amderma, Russia to provide circumpolar data in concert with international sampling efforts at Alert (Nunavut, Canada), Point Barrow (Alaska, USA) and Ny-Ålesund (Svalbard/Spitsbergen, Norway). The objectives of this project are to determine spatial and temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic in order to assist in the development of long-term strategies for this priority pollutant by: A) measuring ambient air TGM concentrations in the Russian Arctic; B) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; and C) studying the circumpolar behaviour of mercury by comparison with data from other polar sites.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
209. Mercury Measurements at Alert

The objectives of the project are: A) to determine temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic, and to assist in the development of long-term strategies for this priority pollutant by: i) measuring ambient air Total Gaseous Mercury (TGM) concentrations in the Canadian Arctic (Alert) and investigating the linkage to elevated levels of mercury known to be present in the Arctic food chain; ii) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; iii) studying the chemical and physical aspects of atmospheric mercury vapour transformation (oxidation) after polar sunrise and the resultant enhanced mercury deposition to the sea, snow and ice surfaces each year during springtime; and iv) obtaining a long-term time series of atmospheric mercury (TGM) concentrations at Alert for the purpose of establishing whether mercury in the troposphere of the northern hemisphere is (still) increasing and if so, at what rate; B) to establish a sound scientific basis for addressing existing gaps of knowledge of the behaviour of mercury in the Arctic environment that will enable international regulatory actions to reflect the appropriate environmental protection strategies and pollution controls for the Arctic by: i) studying the relative roles of anthropogenic and natural sources of mercury so as to clarify understanding of the atmospheric pathways leading to the availability of mercury to Arctic biota; ii) studying tropospheric TGM depletion mechanisms/processes leading to enhanced input of mercury to the Arctic biosphere in spring; iii) undertaking essential speciated measurements of particulate-phase and/or reactive gaseous-phase mercury as well as mercury in precipitation (snow/rain) to quantify wet and dry deposition fluxes into the Arctic environment; and vi) providing the scientific basis for the information and advice used in the preparation and development of Canadian international strategies and negotiating positions for appropriate international control objectives.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
210. Northern Contaminants Air Monitoring: Organochlorine Measurements

The objectives of this project are: A) to determine whether atmospheric concentrations and deposition of priority pollutants in the Arctic are changing in response to various national and international initiatives by: i) continuing to measure the occurrence of selected organochlorines in the arctic atmosphere at Alert, NWT for a period of three more years (measurements started in 1992), in parallel with identical measurements in western Russia at Amderma; ii) sampling at the Kinngait (Cape Dorset) station in 2000/2001 for the purpose of detecting change in the eastern Canadian Arctic by comparison with observations made four years earlier (1994-1996) at this site; and iii) analyzing and reporting data from Alert, Tagish, Kinngait and Dunai Island thereby providing insight into pollutant trends and sources. B) Ensuring the effective utilization of information at the international negotiating table in order to achieve the appropriate restrictions on release of pollutants of concern for the arctic environment by: i) contributing to the next assessment arising from the second phase of the Northern Contaminants Program (Canada) and specifically, the revised Assessments on POPs and Heavy Metals as part of the Arctic Monitoring and Assessment (AMAP) Program Work Plan; and ii) advising Canadian negotiators in preparing reasonable, practical strategies of control.

Organochlorines PCBs PAHs Long-range transport Contaminant transport Arctic Persistent organic pollutants (POPs) Data management Pesticides Atmosphere
211. Fluxes of Mercury from the Arctic Ice Surface during Polar Sunrise Conditions and Melt Conditions

The objectives of this project are: A) to determine the pathway for the transfer of mercury in snowmelt to sea water during the melt period at Alert; B) to determine the extent of open water and wet ice in the summer Arctic as it affects the surface exchange of Hg using satellite radar imagery; and C) to determine the atmospheric dynamics associated with the photochemistry of mercury episodically during the polar sunrise period.

trace metals satellite radar imagery radar Atmospheric processes melt open water acoustic sounding mercury Mapping Heavy metals Long-range transport Spatial trends Contaminant transport Hg Modelling Ice Arctic GIS radar imagery wet ice Atmosphere atmospheric boundary layer boundary layer
212. New Persistent Chemicals in the Arctic Environment

The objectives of this project are A) to determine coplanar polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), brominated diphenyl ethers (BDPEs), chlorophenolic compounds and chloroparaffins in air from arctic monitoring stations; and B) to search for other "new" chemicals in the arctic environment, not currently monitored by Canada's Northern Contaminants Program (NCP) but of potential concern based on known persistence, extent of usage and toxicology.

Sources PCAs BDPEs Pollution sources Exposure monitoring chloroparaffins Sediments Pesticides SCCPs Human intake Marine mammals new chemicals polychlorinated naphthalenes Pathways Organochlorines PCBs chlorinated paraffins Long-range transport brominated diphenyl ethers Spatial trends HAAs Arctic PCNs Persistent organic pollutants (POPs) synthetic musks haloacetic acids Atmosphere polychlorinated alkanes
213. Global Gridded gamma-HCH and Endosulfan Emission Inventories

The aim of this project is to compile information and create a computerized database of historical and present global lindane and endosulfan usage data as well as emission data for gamma-hexachlorocyclohexane (gamma-HCH) and endosulfan with 1 degree x 1 degree lat/long resolution. The objectives of this project are: A) to create global gridded g-HCH and endosulfan emission inventories; B) to study the linkage between global g-HCH and endosulfan use trends and g-HCH and endosulfan concentration trends in the Arctic; and C) to assist in comparing concentrations and ratios of different HCH isomers in the Arctic biotic and abiotic environments.

Sources emission inventory b-HCH alpha-HCH Pollution sources Contaminant transport Modelling GIS a-HCH hexachlorocyclohexane Pesticides endosulfan beta-HCH Organochlorines Mapping lindane ß-HCH Long-range transport Discharges Spatial trends gamma-HCH gridded Emissions HCH Arctic Persistent organic pollutants (POPs) g-HCH Data management Atmosphere Temporal trends
214. Spatial trends in loadings and historical inputs of mercury inferred from Arctic lake sediment cores

1. To determine the depth profiles of mercury (Hg) and lead (Pb) as well as manganese (Mn) and iron (Fe) in fifteen dated Arctic sediment cores over a three year period. Mercury is the main focus. 2. To quantify geographical trends in fluxes of the mercury and its enrichment factors in Nunavut, NWT, Nunavik, and Labrador. To link mercury findings with those of paleolimnological indicators, POPs, as well as indicators of biogeochemical processes of manganese and iron, all of which are obtained from the same cores, or cores from the same sites whenever possible. 3. To complement existing data on mercury in Arctic sediment cores with data generated over a much wider latitudinal and longitudinal range than previous work in order to provide a better understanding of Hg in Canada North. 4. Secondary to Hg, to provide loading data for Pb which may help elucidate the understanding of Hg pathways and sources.

Pathways Sources Metals pollution Canadian Arctic Mercury Heavy metals Spatial trends Arctic Sediments Remote lakes
215. AMAP Human Health Data Centre

The objectives of the centre are: - to provide access to data from recent human health monitoring and research activities conducted as part of the AMAP national implementation plans. - to provide a means to ensure treatment of data in a consistent manner, uniform statistical analysis etc., including application of objective quality assurance procedures. - to begin the process of establishing a long-term archive of relevant Arctic monitoring data for use in future assessments of temporal trends etc. - to meet the ministerial request from the Alta Conference to include human health data in the AMAP thematic data centres.

Populations Heavy metals Indigenous people Arctic Persistent organic pollutants (POPs) Data management Temporal trends Human health Human intake
216. Halocarbons in the atmosphere

The objectives are: 1. to monitor in near-real time the levels of a whole suite of halocarbons (both biogenic and anthropogenic) ranging through CFCs, HCFCs, and HFCs using an adsorption/desorption system coupled to a GC/MS system not using liquid cryogens. 2.The system will be installed (April 2000) at the Ny-Alesund, Zeppelin Research Station and will be operated and owned by NILU (Dr. N.SChmidbauer). 3. Comparisons will be made with the data obtained (since Oct. 1994) on similar compounds from the Mace Head (Ireland) station which uses similar instrumentation, and the Jungfraujoch Station (Jan 2000) operated by EMPA (Dr. Stefan Reimann). 4. Data will be compared to the Southern Hemisphere data collected at Cape Grimm, Tasmania by CSIRO (Dr. P. Fraser) 5. Data will be used to model the dispersion of the halocarbons in the high latitudes and possible consequences for radiative forcing.

Atmospheric processes Sources Long-range transport Contaminant transport Climate change Halocarbons Emissions Anthropogenic Arctic Persistent organic pollutants (POPs) Local pollution Atmosphere Biogenic