The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 181 - 200 of 955 Next
181. Soft Bottom Fauna time series (BIODAFF) (BIODAFF)

EMBOS is a continuation of BIOMARE and aims for integrating marine biological – biodiversity observations Long Term Large Scale in set of selected stations across Europe. Poland (IOPAS) is responsible for the Hornsund site and together with Norway (Norsk Polarinstitutt, UNIS, AKVAPLAN) IOPAS is responsible for the Kongsfjorden site. Main gaps: Sediment chemistry

182. Network of coastal observation of Arctic seas level

Monitoring and study of fluctuation of Arctic seas level

183. Värriö sub-arctic research station of University of Oulu and University of Helsinki (Värriö)

SMEAR I –station (Station for Measuring Ecosystem – Atmosphere Relations) was built in 1991-1992 at the side of Värriö Subarctic Research Station to monitor the pollution originating from Kola Peninsula. Continuous measurements of trace gases, aerosols, photosynthesis growth of Scots pines and meteorology have been carried on by the University of Helsinki since 1992. The station is located at the northern border of Salla municipality, some 6 km’s from the Russian border and built on top of a 390 m high forested hill. A 16 meter high weather mast is mounted next to the measurement cabin. The closest source area for air pollutants are the mining and metallurgical industry at the Kola Peninsula with the most important point sources being Nikel, Montcegorsk and Zapolyarny, respectively. In addition to the measurements carried on by the University of Helsinki, Finnish Meteorological Institute (FMI) has been measuring both sulphates and heavy metals using filter sampling techniques. Also, respiration and photosynthesis of the soil has been measured campaign wise in the vicinity of the station. Trace gases have been measured at four different levels (2, 6.5, 9 and 15 m) above the ground until recently the three highest sampling levels were taken off. The sulphur dioxide concentration is measured with a pulsed fluorescence analyzer. Nitrogen oxides (most importantly NO and NO2) are measured with an analyzer that is based on chemiluminescence and ozone is measured with a photometric analyzer. Total aerosol concentration has been measured since 1991 and the particle size distribution since 1997. The cut-off diameter of the size distribution measurements was changed from 8 nm to 3 nm in 2003. The total concentration is measured using CPC (Condensation Particle Counter) and the size distribution with DMPS (Differential Mobility Particle Sizer) system. Photosynthesis of Scots pines is measured from living twigs using chambers placed on top of the trees. Also, the growth in width and length are measured. A wide range of meteorological parameters are measured at five different levels (2, 4, 6.6, 9, 15 ja 16 m). Network type: Automatic and manual monitoring of atmosphere and biosphere (incl. SMEAR I –station and synoptic weather observations) as well as tracking and monitoring wide range of flora and fauna (e.g. game, insects and berries).

Atmosphere Ecosystems
184. Network of terrestrial meteorological observations

Monitoring and forecast of the atmosphere state and climate change. Main gaps: Initial historical data from specific stations have not been digitized It is needed to control and recover gaps in historical data from specific stations.

185. Human Health National Social-hygienic monitoring system

To establish and maintain the state-owned national system of monitoring, analysis, assessment and support of decision making in the area of environmental and public health with focus on management of health risk factors such as environmental pollution, infections, food and water quality etc. The system has been enforced by the federal governmental Decree Feb. 2. 2006 # 60. It comprises all administrative units (republics, oblasts (counties), autonomous okrugs, cities and some municipalities of Russian Federation including those located in the arctic region. Main gaps: The health and demographic data link exclusively to administrative provinces of Russia which are not always applicable to geographical and climatic regions such as arctic. Network type: Service of Protection Consumers’ Right and Human Wellbeing, Federal Service of Hydrometeorology, laboratories accredited for contaminant measurements, regional/city administration health committees, hospitals Regional and City based observations

Human health
186. Monitoring component of solar radiation in the Arctic

The World Radiation Data Center (WRDC) was established by the order of WMO in the Voeikov Main Geophysical Observatory (Saint Petersburg) in 1964 to centrally collect and provide solar radiation data from the world actinometric network stations. Main gaps: Actually the acquisition of data from some Arctic stations, including Russian ones, is paused due to reconstruction of national actinometric networks. The network included in the international data exchange is sparse. Network type: • Collection of actinometric data from National Meteorological Administrations and other organizations • Processing and control of operational information • Scientific and methodological interaction with NHMS’ • Publication and distribution of bulletins “Solar Radiation and Radiation Balance. World Network”, including data access through the WRDC server • Service of users of information on solar radiation • Analysis of historical data • Creation of metadata base

187. Aerological observation network

Monitoring and forecast of the atmosphere state and climate change. Main gaps: Initial historical data before 1961 from specific stations have not been digitized. A part of metadata have not been digitized

188. Flugstoðir ‐ ISAVIA (ISAVIA)

Isavia is the national operator of Iceland‘s airports, air navigation services and air communications system. Iceland is responsible for international services in the North Atlantic including oceanic air traffic control services and the upper airspace of Greenland. The company and its subsidiaries have undertaken other international support tasks in the past, such as the development of Pristina Airport and ATM services in Kosovo. The company conducts air navigation calibrations in Iceland, the Faroe Islands and Greenland. Isavia operates under the regulatory supervision of the Icelandic and Danish Civil Aviation Authorities. Isavia and its subsidiaries conduct research and development of systems to fulfill all the special needs and safety requirements of the airports and air navigation service operation, with economic considerations in mind. Most of the software systems used by the air traffic control center in Reykjavik and towers are developed in conjunction with the subsidiary company, Tern Systems ltd. The products have been successfully marketed internationally in several overseas projects. For more detailed information, please see Isavia annual report 2010. Main gaps: Not specified Network type: Coordination

189. Oceanological observations in the Arctic Ocean

Monitoring and study of hydrophysical and hydrochemical parameters of the Arctic Ocean

190. Network of voluntary marine meteorological observations

Incidental hydrometeorological observations along vessel routes. Monitoring and forecast of the surface layer atmosphere state, hydrometeorological support of safety of navigation and marine activities.

191. Network of hydrological stations located on rivers and channels

Monitoring and forecast of the state of water streams and hydrological hazards, assessment of water resources. Main gaps: Initial data before 1984 have not been digitized.

192. Danish Meteorological Institute (DMI)

DMI operates general weather observation for meteorological and climatological services. DMI operates geomagnetic observatories in Greenland DMI monitores stratospheric ozone and UV radiation DMI operatetes ocean monitoring and operational icecharting

Oceanography Atmosphere Ecosystems
193. Umhverfisstofnun ‐ The Environment Agency of Iceland (Umhverfisstofnun)

The Environment Agency operates under the direction of the Ministry for the Environment. It's role is to promote the protection as well as sustainable use of Iceland’s natural resources, as well as public welfare by helping to ensure a healthy environment, and safe consumer goods. Areas of operation: 1. Information and advice for the public, businesses and regulatory authorities 2. Monitoring of environmental quality 3. Evaluation of environmental impact assessment and development plans 4. Operation supervision, inspection, operating permits, etc. 5. Assessment of conservation effects and registration of unique nature 6. Management and supervision of designated protected areas 7. Wildlife management and conservation 8. Eco‐labeling 9. Labeling and handling of toxic as well as other hazardous substances 10. Coordination of health and safety in public places 11. Coordination of local environmental and health inspectorates 12. Genetically modified organisms (GMO) Main gaps: Metadata archives and metadata availability Network type: ‐ Thematic observations ‐ Community based observations ‐ Coordination

Geology Oceanography Atmosphere Ecosystems
194. POLAR-AOD and the Arctic Oceanographic Observations (AREX)

The Arctic region represents a sensitive ecosystem, which is susceptible to even small changes in the local climate. Special conditions of usually high surface albedo and low solar elevations cause enhanced aerosol/cloud effects due to multiple scattering. It is suspected that this increased interaction between solar radiation and the aerosol particles/clouds magnifies their radiative impact. Thus, for a given aerosol distribution, the specific optical properties are enhanced in the polar regions. For the same reasons, results from field experiments at low latitudes are difficult to transfer to polar regions and as a consequence there is an urgent need to conduct specific measurement programs in high latitude regions. In order to improve the knowledge about the origin, transport pathways, vertical structure of aerosol physical and chemical properties as well as the impact on climate in the polar regions, a combined effort of surface-based, airborne and spaceborne measurements is needed. Therefore, this proposed project is aiming at a determination of the vertical structure of the chemical, physical and optical properties of Arctic aerosol particles, including solar radiative closure between observed and calculated aerosol properties (direct climate effect)

195. Arctic Oceanographic Observations (AREX) (AREX)

Since 1988 the regular summer hydrographic observations in the Nordic Seas and Fram Strait have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, in the frames of EU projects VEINS, ASOF-N and DAMOCLES and within Polish-Norwegian cooperation in the AWAKE project. The main objectives are:  to study the long-term variability of water mass distribution, their physical and chemical properties and different pathways in the Nordic Seas;  to investigate the Atlantic water (AW) circulation in the Nordic Seas and its inflow into the Arctic Ocean;  to recognize the possible feedbacks between the Atlantic water variability and local and global climate changes.

Hydrography Oceanography
196. Centre d'études nordiques (CEN) Observing Program (CEN)

The Centre for Northern Studies (; CEN: Centre d’études nordiques) is an interuniversity centre of excellence for research involving Université Laval, Université du Québec à Rimouski and the Centre Eau, Terre et Environnement de l'Institut national de la recherche scientifique (INRS). Members also come from the following affiliations: Université de Montréal, Université du Québec à Chicoutimi, à Montréal and à Trois-Rivières, Université de Sherbrooke, and the College François-Xavier Garneau. The CEN is multidisciplinary, bringing together over forty researchers including biologists, geographers, geologists, engineers, archaeologists, and landscape management specialists. The CEN community also counts two hundred graduate students, postdoctoral fellows, and employees. CEN’s mission is to contribute to the sustainable development of northern regions by way of an improved understanding of environmental change. CEN researchers analyze the evolution of northern environments in the context of climate warming and accelerated socio-economic change and train highly qualified personnel in the analysis and management of cold region ecosystems and geosystems. In partnership with government, industry and northern communities, CEN plays a pivotal role in environmental stewardship and development of the circumpolar North. CEN research activities are focused on three themes: 1 -Structure and function of northern continental environments. 2 -Evolution of northern environments in the context of global change. 3-Evaluation of the risks associated with environmental change and development of adaptation strategies. In 2009, CEN organised an international workshop with the European SAON network SCANNET and also partners throughout Canada. The workshop culminated in the formal incorporation of CEN stations within SCANNET ( Main gaps: [Not specified] Network type: CEN operates the CEN Network, an extensive network of meteorological and field stations that were established in consultation with northern communities. The CEN Network comprises over 75 climate and soil monitoring stations and eight field stations distributed across a 4000 km North-South gradient from boreal forest to the High Arctic. The eight field stations are situated at the following sites: Radisson, Whapmagoostui- Kuujjuarapik, Umiujaq, Lac à l’Eau Claire (in the proposed new park Tursujuq), Boniface River, Salluit, and Bylot and Ward Hunt Islands, which are part of two National Parks in Nunavut. The main field station at the heart of the CEN Network is at Whapmagoostui-Kuujjuarapik.

Oceanography Atmosphere Ecosystems
197. International Arctic Human Biomonitoring – Arctic Monitoring and Assessment Program (AMAP) (International Arctic Human Biomonitoring)

The network was established to assess the implications and impacts of pollution and contaminants on the health of Arctic residents. The biomonitoring program monitors concentrations of contaminants in human tissues in the eight circumpolar nations and assesses spatial and temporal patterns/trends and potential health effects at present and future levels. Where available, contaminant guidelines are used to evaluate risk to populations/communities. AMAP has been designed to have roots in the national programs of participating countries. Main gaps: Trend data of legacy POPs and metals is available, though some communities have only two sampling periods, further monitoing is planned; measurements of tissue concentrations of emerging contaminants and personal care products is just starting and needs to be continued; health effects research needs to be expanded to other regions with high exposure (e.g., arctic Russia). Network type: - Thematical observations: Contaminant concentrations and health effects data - Field stations: None, community / population based research. - Community based observations: Participation of community health workers and community residents for data collection through tissue samples - Coordination: Human Health Assessment Group (HHAG) was created bringing together leading researchers and research coordinators from eight circumpolar countries; AMAP Ring Test (QA/QC program) coordinates and standardizes laboratories for analyzing biomonitoring samples.

Human health
198. West Spitsbergen Fiords Hydrography

Since 2000 the regular summer hydSince 2000 the regular summer hydrographic observations in the Western Spitsbergen Fjords have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, and in the frames Polish-Norwegian research Fund projects ALKEKONGE and AWAKE. The main objectives are:  to study the variability of water mass physical and chemical properties in the Western Spitsbergen Fiords;  to investigate the Atlantic water (AW) inflow into the fjords;  to recognize the possible feedbacks between the Atlantic water variability, local climate and glaciers discharge.rographic observations in the Western Spitsbergen Fjords have been collected by the Institute of Oceanology Polish Academy of Sciences (IOPAS). Observational activities were carried out under several national programs, and in the frames Polish-Norwegian research Fund projects ALKEKONGE and AWAKE.

199. Intensive forest monitoring sites of Finnish Forest Research Institute (Metla) (Intensive forest monitoring network)

The national program of intensive forest monitoring is managed by the Finnish Forest Research Institute (Metla). In 2011 five of the 18 Finnish intensive monitoring plots situated in Finnish Lapland (Fig. 5.1.: Sevettijärvi, Pallasjärvi and three plots in Kivalo). Finnish national intensive forest monitoring network is part of pan-European ICP Forests network of ca. 800 plots ( ICP Forests (the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) operates under the UNECE Convention on Long-range Transboundary Air Pollution. These intensive monitoring plots were established in co-operation of ICP Forests and European Commission in mid 1990’s. European Commission co-financed forest monitoring under forest monitoring regulations until the end of 2006 when the Forest Focus regulation (EC No 2152 / 2003) expired. During 2009-2011 part of these intensive forest monitoring plots were included in Life+-project called “FutMon” (Further Development and Implementation of an EU-level Forest Monitoring System: Monitoring is carried out following the manual of ICP Forests ( and the monitoring data is submitted once a year to the ICP Forests database in Hamburg. Every year Programme Coordinating Centre of ICP Forests publishes technical and executive reports on the condition of forests in Europe. ICP Forests monitoring activities provide information also for a number of criteria and indicators of sustainable forest management as defined by the Forest Europe Ministerial Conference on the Protection of Forests in Europe. Network type: National nation-wide monitoring

Pollution sources Environmental management Atmosphere Ecosystems
200. Hydrological issues of the glacierized Waldemar River catchment

Recently observed changes in glacierized areas significantly influences on water circulation features in those regions. Project assumes hydrological research in Waldemar River catchment as the example of the High-Arctic glacierized basin. Those investigations began in late 1970’s. From that date substantial changes in catchment characteristic are observed (e.g. decrease degree of glaciation). Glacier-fed river characteristics are well recognized all over the globe. But still there is a need to define how contemporary deglaciation processes affects the water circulation cycle. Basics hydrological features in Waldemar River Catchment are continuously investigated since 1995. In the close feature, a HIWRC programme will be expanded to include research of major glaciohydrological processes in catchment (e.g. internal glacial drainage and it contribution to total outflow). Study assume measurements in a few river points – both in close vicinity of glacier (with no other than glacial water source tributaries) and in lowest part of catchment (with periglacial tributaries).