Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 161 - 180 of 955 Next
161. GRENE (Green Network of Excellence) (GRENE)

1. Priority Research Theme (1) Clarification of the mechanism of the Arctic amplification. (2) The role of Arctic in the global climate change and future projection. (3) Evaluation on the influence of the Arctic Environmental Change to the weather in the Japan area and fishery. (4) Future projection of the sea ice distribution in relation to the evaluation Arctic route. 2. Basic infrastructure (1) Arctic research cruises by Japanese and foreign ships/ice breaker. (2) Cloud radar system. (3) Data archive system. 3. Establishment of “Japan Consortium for Arctic Environment Research” 4. Budget size: 650, 000, 000 Japanese Yen per year. (appox. 8 million USD per year) Network type: research programme

Hydrography Climate Sea ice Oceanography Atmosphere
162. Aerological Observation Network in the North Polar Region

Monitoring and study of free atmosphere in the North Polar Region

Atmosphere
163. Hydrometric Observations

To provide for the collection, interpretation, and dissemination of surface water quantity data and information and services that are vital to meet a wide range of water management, engineering and environmental needs across Canada. Main gaps: The current hydrometric network is deficient in terms of understanding the regional hydrology and river regimes across Canada. The map below integrates Environment Canada’s two key frameworks: the National Drainage Area Framework with the National Terrestrial Ecological Framework to identify network deficiencies. In order to have sufficient information there needs to be at least one active hydrometric station measuring natural flow in each corresponding ecodistrict within a sub-sub drainage area. This strategy ensures that there will be sufficient information to understand the hydrological processes and the interrelationships with the landscape. This information is essential for research and enhancing our predictive capabilities and data transfer. As the map shows, areas of sufficiency are concentrated in the southern, more populated regions of the country. Network sufficiency declines to the north and northeast, with great extents of northern Canada having no coverage at all. Network type: in-situ.water level and streamflow monitoring stations

Oceanography Atmosphere Human health Ecosystems
164. Permafrost observational networks in Russia

Lack of consistent spatially representative and sufficiently long time series characterizing the state of permafrost and its dynamics under changing climatic conditions necessitates improvement and further development of observational networks. The purpose of this section is to provide an insight into the permafrost networks available in the Russian part of the Artic. Data characterizing the state and dynamics of Russian permafrost in the past several decades come from three independent sources. The first source of data is soil temperature observations up to 3.2 m. depth conducted at selected meteorological stations. These conventional measurements are not specifically targeted at studying permafrost parameters. Two other networks, authorized under the Global Climate Observing System (GCOS) and its associated organizations, have been developed for monitoring permafrost temperature and seasonal thaw depth. Temperature observations in the boreholes are conducted under the framework of the Thermal State of Permafrost (TSP) project. Another source is the data from the Circumpolar Active Layer Monitoring (CALM) project. Here we give brief description of these networks and results obtained so far for Russian permafrost regions. Main gaps: Although soil temperatures are measured at many of the Russian stations, observations in permafrost regions are sparse and do not capture the whole range of permafrost variability due to difference in climatic and biophysiographical conditions. • Evaluation of the soil temperature regime and dynamics through correlations with air temperatures is not an option, since only a small part of total variability is explained. • Other networks and measurements are needed to evaluate the dynamics of permafrost.

Ecosystems
165. Arctic Avian Monitoring Network

The main objective of the Arctic Avian Monitoring Network is to characterize the occurrence of birds in the Arctic to support regulatory responsibilities and conservation of birds and the biodiversity on which they depend. Temporal and spatial changes can be used to indicate changes in ecosystems that might otherwise be difficult to detect (e.g. marine areas) and can also be used to model predicted changes due to human activity. Main gaps: Large gaps both spatially and temporally. Many datasets cover short periods. Some species groups not well covered (e.g. landbirds and shorebirds) Network type: Network consists of programs divided into three species themes that combine common aspects of biology and human use: Waterfowl: e.g. ducks geese and swans • centered on aerial surveys of high density breeding areas and following non-breeding birds using satellite telemetry Seabirds: e.g. gulls, terns and auks • centered on surveys at breeding colonies and of birds at sea (either by direct observation or through the use of data loggers) Shorebirds: e.g. sandpipers, plovers and phalaropes • focused on broad-scale, stratified sampling of terrestrial areas and aerial surveys of non-marine habitats

Oceanography Human health Ecosystems
166. Ice-drifting buoy observation in sea ice area of the Arctic Ocean

Ice-drifting buoy observation in sea ice area of the Arctic Ocean Main gaps: not well documented…

Hydrography Climate Sea ice Oceanography Atmosphere
167. Rabben station

Research station in Ny-Ålesund, Svalbard

168. Monitoring of Biodiversity in the Arctic

Briefly and schematically, data on the availability of monitoring information on seabirds nesting in the Russian Arctic are given in the Table. It should be noted that the less favorable situation with monitoring of nesting sea birds is in the central Russian Arctic and its high-latitude regions where colonies exist of Arctic and high-Arctic type. No monitoring is being conducted there, and no systematic observations were made before. The situation is a little bit better with facultativecolonial disperse nesting species, they are rarely the subjects of long-term research and monitoring programs. The situation is better with the Arctic peripheral zones, i.e. White-Barents Seas and Bering-Far East sectors. There are areas covered by long-term observations, but they are often those that are out of the Arctic region according to CAFF definition (Onega Bay, Taui Bay, Commander Islands). Unfortunately, the most representative sea bird monitoring series in the CAFF area, collected in Kandalaksha and Wrangel Island reserves, were interrupted and/or disturbed in the 1990s (in terms of continuity of methods of material collection).

Ecosystems
169. Observation of Greenhouse Gases using Aircraft and Tower Network in Siberia

Cooperation with: ・Institute of Atmospheric Optics, Tomsk, Russia ・Permafrost Institute, Yakutsk, Russia ・Central Aerological Observatory, Moscow, Russia ・Institute of Microbiology, Moscow, Russia

Climate Pollution sources Atmosphere
170. Spain general summary

Our objective in present SAON meeting was to know more about SAON activities and plannings to coordinate and promote guidelines criteria for observations in the ARctic Present Spain Research in Arctic is performed mainly for universities and scientific institutions , down the responsability of the Science Department with the support of several national institutions including the Defense Department and Foreign Affairs Institutions are coordinated by the National Polar Committee. The National Scientific Program finance the activities in the polar zones Although our main scientific activities are in Antarctica the activity of Spain in Arctic is rapidly increasing following the fact that Arctic research is a priority task in our Science Program At present we have detected 16 scientific groups working activelly in the differnts fields of Arctic topics (glaciology, meteorology, permafrost, high atmosphere, ecology, physical oceanography, marine geology and biology) These activities are mainly performed in cooperation with Arctic countries Institutions via institutional or researchers contacts About our media to work in Arctic ocean Spain has at present two multiporposes oceanographic research ships In the last years our Ocanographic ship Hesperides has developed two campaigns in The area of Greenland and Svalvars Island in the fields of marine Geology , marine biology and physical oceanography For next summer Hesperides will perform a third oceanographic campaign close to the Atlantic coast of Greenland Other national institutions have been working in marine biology campaigns including fisheries stock evolution Spain has a National Centre of Polar Data were all researchers must enter their raw data gathered in the polar campaigns We considerer , at present , our interest to cooperate inside SAON board, considering that besides other possible cooperation to SAON tasks could be a cooperation with our Polar Data Centre

Geology Oceanography Atmosphere Ecosystems
171. Arctic Atmospheric Boundary Layer Observing System (ABLOS)

monitoring of thermal and humidity parameters of arctic atmospheric boundary layer in horizontal and vertical profile covering glaciated area, non-glaciated area and mountain peak

Climate Sea ice
172. Dynamic Response of Arctic Tidewater Glaciers to Climate Change (GLACIODYN-T)

University of Silesia in close cooperation with the Institute of Geophysics, Polosh Academy of Sciences (PAS) has developed and maintain monitoring of glaciers in SW Spitsbergen, Svalbard. Monitoring network of land ice masses in Southern Spitsbergen is aimed to study the response of tidewater glaciers to climate warming, with focus on mass loss due to calving. Seasonal and interannual changes in glacier flow velocity, fluctuation of terminus position and calving rate are studied for better understanding of ice berg calving. The target glacier Hansbreen has a comprehensive ground observing system (Figure 21). It consists of mass balance stakes, automatic weather stations (AWS), time lapse GPS survey of velocity at stake T4, two time lapse cameras, automatic laser ranger and panoramic radar for measurements of ice cliff fluctuations. Moreover, mass balance, including snow cover studies are conducted every year since 1989. In some years high frequency ground penetrating radar is used for snow thickness measurements along the same profiles on the glacier. Satellite remote sensing is used for extraction of data on glacier flow velocity and fluctuation of termini and calculation of mass loss by calving. Up-to-dated inventory of glaciers in Southern Spitsbergen has been done by remote sensing methods (Figure 23). Studies are conducted in cooperation with Spanish, Norwegian and Italian partners. Cooperation with Institute of Oceanology, PAS (since 2010) is developed to monitor sea water parameters for studies of sea water - ice cliff interaction. Main gaps: Gaps in series of observations due to failures of equipment, lack of power supply or damage by polar bears. Long term tide and wave record required. More tidewater glaciers advisable with monitoring of flow velocity by GPS as ground truth data for calibration of remote sensing survey.

Atmosphere
173. Hans Glacier Monitoring (HGM) (HGM)

Main objectives of Hans Monitoring Network are collecting long-term record of mass-balance measurements and surface glacier velocities. Additionally we collect meteorological parameter at 3 AWSs located in ablation and accumulation area and ELA.

Atmosphere
174. Siglingastofnun ‐ Icelandic Maritime Administration, IMA (IMA)

The Minister of the Interior is responsible for centrally administrating maritime, harbour and lighthouse affairs, except where otherwise provided for in a different law. The IMA, with a staff of around 70, handles numerous activities in the field of maritime administration and supervision, such as operation of lighthouses and navigational systems, vessel registration and supervision of ship surveys, manning and certification. The IMA also conducts research into ship stability and ship and harbour security and harbour development, coastal changes and coastal protection. Main gaps: Not specified Network type: ‐ Thematic observations in mainfields

Environmental management Shipping
175. Sodankylä-Pallas super site of the Finnish Meteorological Institute (FMI) (Sodankylä-Pallas)

Atmosphere monitoring, cryosphere monitoring, atmosphere-biosphere interaction. In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments Network type: In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments

Geology Atmosphere Ecosystems
176. ArcticNet Network of Excellence Observing Program

ArcticNet brings together scientists and managers in the natural, human health and social sciences with their partners in Inuit organizations, northern communities, government and industry to help Canadians face the impacts and opportunities of climate change and globalization in the Arctic. Over 110 ArcticNet researchers and 400 graduate students, postdoctoral fellows, research associates and technicians from 28 Canadian universities and 8 federal departments collaborate on 28 research projects with over 150 partner organizations from 15 countries. The major objectives of the Network are: • Build synergy among existing Centres of Excellence in the natural, human health and social Arctic sciences. • Involve northerners, government and industry in the steering of the Network and scientific process through bilateral exchange of knowledge, training and technology. • Increase and update the observational basis needed to address the ecosystem-level questions raised by climate change and globalization in the Arctic. • Provide academic researchers and their national and international collaborators with stable access to the coastal Canadian Arctic. • Consolidate national and international collaborations in the study of the Canadian Arctic. • Contribute to the training of the next generation of experts, from north and south, needed to study, model and ensure the stewardship of the changing Canadian Arctic. • Translate our growing understanding of the changing Arctic into regional impact assessments, national policies and adaptation strategies. Main gaps: [Not specified] Network type: Thematical observations:Yes Field stations: Yes on Land (see CEN sheet) and Marine (CCGS Amundsen) Community based observations: Yes Coordination: Yes

Oceanography Atmosphere Human health Ecosystems
177. Directorate of Health - Centre for Health Security and Communicable Disease Control - Embætti landlæknis – sóttvarnalæknir

The Centre for Health Security and Communicable Disease Control at the Directorate of Health is operated according to the Act on Health Security and Communicable Diseases, No. 19/1997 (http://eng.velferdarraduneyti.is/media/Reglugerdir-enska/Act_on_Communicable_Diseases_2007.pdf). This act applies to diseases and agents that can cause epidemics and other serious infectious diseases or pose a threat to public welfare. “Diseases” means disease or infection caused by infectious material, microbes and their toxins or parasites as well as serious health consequences caused by toxic chemicals and radio nuclear materials. The act also applies to unusual and unexpected events which may cause severe health consequences of international concern. The Chief Epidemiologist (CE) is responsible for maintaining a register of communicable diseases, including agents causing diseases and health threat events, immunisations and the use of antimicrobial drugs. These registers are intended to be of use in preventive measures and in epidemiological research. The CE chairs an inter-organisational committee on response measures if there is a risk that animals, food, water, sewers, ventilation or anything else in the environment is spreading or could spread infectious sources of disease, toxic chemicals or radio-nuclear agents that threaten the health of humans. The Minister decides, on the advice of the CE, whether official measures should be implemented, such as immunisation, isolation of infected persons, disinfections, quarantining of communities or the whole country, closing of schools or prohibition of public gatherings. The CE may apply such emergency measures without seeking authority in advance, if he believes that any delay would entail a risk, but he must inform the Minister of his actions immediately Network type: - Thematic observations - Health care observations - Community based observations - Epidemic intelligence

Human health
178. Hydrological observation network for land water bodies

Monitoring of the state of land water bodies and river estuaries Network type: Data on the network for land water bodies and river estuaries covers the region of the Russian Arctic limited with its water resource boundaries close to the AMAP boundaries. Within these boundaries, when the network extension was the greatest in the 1980s, there were 288 points including 199 basic ones (97 of which are reference ones) and 89 auxiliary and departmental ones. Actually in the Russian Arctic, there are 182 points including 137 basic ones (88 of which are reference ones) and 52 auxiliary and departmental ones and 12 of which function under special estuarine programs

179. Monitoring of contaminants in atmosphere and biota in Greenland

Temporal trend monitoring of contaminants in atmosphere and biota in Greenland. Modelling the atmospheric transport pathways and deposition of contaminants in the Arctic as well as determination of climate related parameters.

Atmosphere Ecosystems
180. Landgræðsla Ríkisins ‐ The Soil Conservation Service of Iceland, SCS (SCS)

The main tasks of the SCSI include combating desertification, sand encroachment and other soil erosion, promotion of sustainable land use and reclamation and restoration of degraded land. The work is on different levels, from policy making and research, to extension services and management of large‐ and small‐scale reclamation projects. The total area of reclamation sites is about 4460 km2. The SCSI operates several district offices around Iceland with headquarters at Gunnarsholt in South Iceland. The total number of permanent staff is about 60. Over 600 farmers participate in reclamation activities in cooperation with the SCSI. These sites are monitored annually with site visits by SCSI staff. • The SCSI monitors vegetation dynamics, carbon sequestration in soils and vegetation in all land reclamation sites active since 1990 as a part of Iceland's commitment to the Kyoto emission imitation commitment. Over 500 plots are monitored since 2007 or about 100 annually, hence revisited every five years. • The SCSI also monitors streambank erosion. • The SCSI in collaboration with the University of Iceland, institutes and individuals around Iceland monitor phenology of selected plant species for determining long term impact of climate change on plants. The project started in 2010 with monitoring sites located in diverse conditions. Main gaps: Not specified Network type: ‐ Thematic observations ‐ Field stations ‐ Permanent monitoring plots

Ecosystems