Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 141 - 160 of 216 Next
141. SAMMOA-FTIR

The FTIR (Fourier Transform Infrared Spectroscopy) has been established as a powerful tool for measurements of atmospheric trace gases. Using the sun or moon as light source, between 20-30 trace gases of the tropo- and stratosphere can be detected by their absorption features. The analysis of the spectra allow to retrieve the total zenith columns of the trace gases. The aim of the SAMMOA project is to study the stratospheric ozon depletion during the summer time period. While the processes during winter/spring are investigated in detail the summertime ozone loss has not been studied so far. Therefore FTIR solar absorption measurements of ozone and related species are to be done on much more observation days beside the routine observations within the NDSC

Atmospheric processes Ozone FTIR Trace gases Climate variability stratosphere Climate NDSC Climate change Arctic Summertime ozone loss SAMMOA Atmosphere
142. DOAS measurements of atmospheric trace gases (NDSC)

Quasi-continuous observation of several atmospheric species are performed by measuring the absorption of visible and near ultraviolet sunlight scattered from the sky or in direct moonlight. Column abundance of molecules such as ozone, NO2, OClO, NO3, BrO, HCHO and IO are derived by means of a Differential Optical Absorption (DOAS) algorithm and a radiative transfer model. These activities are part of calibration and validation studies of different satellite experiments (GOME, SAGE III, SCIAMACHY). Since 1999 the instrument is part of the Network of the Detection of Stratospheric Change (NDSC). The instrument has been installed in 1995 as the second UV/vis instrument from the Institute of Environmental Physics. One similar setup in Bremen is continuously running with the exception of short maintenance breaks since 1993.

Atmospheric processes Ozone Trace gases Climate variability Climate NDSC Climate change Arctic DOAS Atmosphere Satellite validation
143. Effects of UV-radiation on macroalgae of the Kongsfjorden

Photoinhibition of photosynthesis by UV radiation, the formation of UV-screening pigments, DNA damage by UV radiation as well as DNA repair mechanisms will be determined in marine macroalgae of the Kongsfjord. Moreover, algae from different water depths will be transplanted by divers into areas with opposite light climate or covered by UV-screening filters and their physiological reactions tested. Additionally, the susceptability of the unicellular algal spores to UV-radiation will be tested. The results will allow insights into the effect of UV and photosynthetically active radiation on the zonation of macrocalgae and on the structure of phytobenthic communities. The data will be used to model the effects of increased of UV-radiation due to stratospheric ozone depletion on the Kongsfjord phytobenthic communities.

Biological effects Ozone Biology DNA UV radiation Phytobenthic communities Marine macroalgae Exposure Arctic Algae
144. Seismological "Very Broad Band" Station (VBB-Station)

The new seismological broad band station KBS at Ny-Ålesund replaces a former WWSSN station operated by the Institute for Solid Earth Physics of the University of Bergen. Both instrumentation and data acquisition of the old station were inadequate to meet all the demands for highest data quality for today's modern seismological research. The high technical standard of the new stations instrumentation now fulfils all the requirements of a modern broad band station. Therefore this station is integrated into the international Global Seismological Network, GSN, for monitoring the world-wide seismic activity. Special interests focus on regional seismicity at and around Svalbard itself and along the ridges in the arctic ocean. KBS is an open station, e.g., any interested scientist or international organization os allowed to retrieve data of special interest. Data are routinely processed and stored at the IRIS Data Management Center in Seattle. Copies are also available at the Geoforschungszentrum Potsdam (GFZ).

Geology Seismology Geophysics Arctic
145. UV-A/UV-B measurements

The changes in the stratospheric ozone layer due to anthropogen emissions lead to an increasing insolation of sunlight in the UV-B range (280nm - 320nm) on ground. One of the major objects of UV-B measurements is to detect long-term trends. The most interesting areas corresponding to ozone depletion are Antarctica and more recently the region around the northern pole. In interdisciplinary cooperation the data are also basis for research in the effects of increasing UV-B doses on plankton, algae, and other organisms. Since 1998 additional measurements of UV-A radiation (320-400nm) are done.

UV-B Biological effects Ozone trend measurements UV radiation Climate Climate change Arctic Atmosphere Temporal trends UV-a
146. Trace gas measurements by Fourier Transform Infrared Spectroscopy (NDSC)

The FTIR (Fourier Transform Infrared Spectroscopy) has been established as a powerful tool for measurements of atmospheric trace gases. Using the sun or moon as light source, between 20-30 trace gases of the tropo- and stratosphere can be detected by their absorption features. The analysis of the spectra allows to retrieve the total zenith columns of the trace gases. For a few trace gases the pressure broadening of the lines allows to get additionally some information on the vertical concentration profiles. Some important trace gases cannot be detected in the IR but in the UV/VIS. This makes it useful to record the whole spectral region from the IR from about 700/cm (14 µm) to the UV at 33000/cm (300 nm).

Atmospheric processes Ozone OH concentrations Arctic haze Trace gases Climate variability Climate Climate change Arctic Atmosphere Satellite validation
147. Microwave observations of stratospheric trace species in Ny-Ålesund

Microwave radiometers are part of the standard instrumentation at primary NDSC stations and are due to their long-term stability and self calibrating technique especially useful for monitoring purposes. Altitude profiles are retrieved from the shape of the pressure broadened thermally induced emission line of the observed species. The instruments for the observation of stratospheric ozone, chlorine monoxide and water vapour at the Koldewey Station in Ny-Ålesund were developed at the University of Bremen and upgrades and improvements are regularly carried out. The instruments have been automated during recent years and ozone and water vapour observation on Spitsbergen are carried out all year round. Chlorine monoxide is only observed in late winter and early spring, when enhanced concentrations in the lower stratosphere are to be expected. Routine operation and maintenance are done by the station engineer. Data analysis is carried out at the University of Bremen.

Atmospheric processes Ozone Climate variability Climate Chlorine monoxide Climate change Arctic Water vapour Atmosphere Satellite validation
148. Effects of atmospheric aerosol on climate, measured by sun and star photometer

In recent years, much attention has been directed towards understandig the effects of aerosols on a variety of processes in the earth atmosphere. Aerosols play an integral role in limiting visibility, they serve as nuclei for the formation of fog and cloud droplets, they affect the earth radiative budget, and thus climate, both directly and indirectly, and they inhibit the propagation of electromagnetic radiation. The Arctic aerosols, especially Arctic Haze and tropospheric ice crystals possible have important climatic and ecological and global change implications. Since 1991 Sun photometer observations of the polar atmopheric aerosol have been performed at the Koldewey Station in Ny-Aalesund, Spitzbergen. In order to complete the coverage and quality of measurements during the polar night a high sensitive Star photometer is installed since January 1996. Both measurements, the daylight Sun photometer measurements and night Star photometer measurements will be continued.

Aerosols Atmospheric processes Arctic haze Climate variability Long-range transport Climate Climate change Arctic Tropospheric ice crystals Atmosphere
149. Radiation measurements in framework of the Surface Radiation Network - BSRN

The Baseline Surface Radiation Network (BSRN) is a cooperative network of surface radiation budget. Measurement stations operated by various national agencies and universities under the guiding principle set out by the World Climate Research Programme (WCRP). Presently about 15 stations have been established, one of them is Ny-Ålesund. The concept for a Baseline Surface Radiation Network has developed from the needs of both the climate change and satellite validation communities. The aims of the programme are the monitoring of long-term trends in radiation fluxes at the surface and the providing validation data for satellite determinations of the surface radiation budget. The BSRN station Ny-Aalesund was installed in summer 1992 and is regularly operating since August 1992.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Arctic Atmosphere Satellite validation
150. Long Term Monitoring of Solar Radiation in Ny-Ålesund

Permanent monitoring of basic climate data for the purpose of better understanding the Arctic climate processes and detecting trends.

Atmospheric processes UV radiation Geophysics Climate Climate change solar radiation Arctic Atmosphere
151. Determination of stratospheric aerosols by balloon borne sensors

Stratospheric aerosols like Polar Stratospheric Clouds (PSCs) or volcanic aerosols are investigated by different types of balloon borne sensors in co-operation with the University of Nagoya, Japan, and the University of Wisconsin, Laramie, Wisconsin. The sensors flown are dedicated optilca particle counters (OPC) or backscatter sondes (BKS), respectively.

aerosols Atmospheric processes Ozone polar stratospheric clouds Geophysics Climate variability Climate Climate change balloon sonde optical particle counter Arctic PSCs Atmosphere
152. Contributions to the THESEO 2000 / SOLVE campaign

In preparation to the launch of the SAGE III experiment in March 2001, NASA and the European Union performed the SOLVE/THESEO-2000 campaign, which had three components: (i) an aircraft campaign using the NASA DC-8 and ER-2 airplanes out of Kiruna/Sweden, (ii) launches of large stratospheric research balloons from Kiruna, (iii) validation exercises for the commissioning phase of SAGE III. The German Arctic research station Koldewey in Ny-Ålesund/Spitsbergen contributed to (i), (ii), and (iii) by performing measurements of stratospheric components like ozone, trace gases, aerosols (PSCs), temperature and winds. The main observation periods were from December 1999 to March 2000.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Arctic Atmosphere
153. Investigations of tropospheric aerosols by lidar

A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.

aerosols Atmospheric processes Arctic haze Geophysics tropospheric aerosols Climate variability Long-range transport Climate ASTAR Climate change Arctic Local pollution water vapour Atmosphere troposphere water vapor
154. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV
155. Submarine Operational And Research Environmental Database (SOARED)

The Submarine Operational And Research Environmental Database (SOARED)is comprised of a fixed relational environmental database using unclassified data collected during the Science Ice Exercises (SCICEX) during the past several years. It also includes publicly accessible gridded historical sound velocity, temperature and salinity data from 1900 from the US National Oceanographic Data Center. This project is a demonstration system to show ways to retrieve and analyze sound velocity, temperature and salinity profiles, bathymetry and ice thickness data using a mouse-driven GIS-based query.

Shelf seas Hydrography Mapping Spatial trends Sea ice Climate change Ice Oceanography Arctic GIS Data management Ocean currents Temporal trends
156. Climate and contamination of the western arctic: monitoring change with the Black Guillemot, an apex marine predator

Examine temporal and spatial variation in trace metal concentrations in the western Arctic through the analysis of Black Guillemot feathers. Temporal trends being examined using study skins collected as early as 1897. Spatial variation examined in conjunction with carbon isotope signatures in feathers and by sampling both winter and summer plumages. Regional climate change monitored through examination of annual variation in breeding chronology and success in relation to snow and ice melt.

Heavy metals Climate variability Spatial trends Climate change Ice Arctic Persistent organic pollutants (POPs) Seabirds Temporal trends
157. Arctic Social Science Data Center (ASDC)

A proposal has been submitted to the National Science Foundation titled: For Support of the Arctic Social Science Data Center at NSIDC, OPP-0119836.

Arctic social science Arctic Data management
158. Monitoring Beaufort Sea waterfowl and marine birds

The overall project outlined in this proposal represents a series of interrelated studies designed to answer questions regarding the effects of disturbance on distribution and abundance of waterfowl and marine birds. The primary studies (i.e., aerial surveys) are directly related to the objectives identified in the Minerals Management Service (MMS) Statement-of-work regarding Monitoring Beaufort Sea Waterfowl and Marine Birds near the Prudhoe Bay Oil Field, Alaska. Additionally, we plan to include the ‘optional’ studies on eiders using off-shore barrier island habitats. Finally, we propose to conduct ground based studies designed to enhance and expand the interpretation of the aerial surveys. The specific objectives of this study are: 1. Monitor Long-tailed Duck and other species within and among industrial and control areas in a manner that will allow comparison with earlier aerial surveys using Johnson and Gazeys’ (1992) study design. a) Perform replicate aerial surveys of five previously established transects based on existing protocol (OCS-MMS 92-0060). b) Expand the area from original surveys to include near-shore areas along Beaufort Sea coastline between the original “industrial” (Jones-Return Islands) and “control” (Stockton-Maguire-Flaxman Islands) areas. c) Define the range of variation for area waterfowl and marine bird populations. Correlate this variation with environmental factors and oil and gas exploration, development, and production activities. 2. Expand aerial monitoring approximately 50 km offshore. Surveys will target Spectacled, Common and King eiders. The goal is to sample areas potentially impacted by oil spills from the Liberty, Northstar, and/or Sandpiper Units. 3. Develop a monitoring protocol for birds breeding on barrier islands, particularly Common Eiders. These data will be compared to historic data summarized by Schamel (1977) and Moitoret (1998). 4. Examine relationships between life-history parameters (e.g., fidelity, annual survival, productivity) and ranges of variation in Long-tailed Ducks and Common Eider distribution and abundance to enhance interpretation of cross-seasonal effects of disturbance. That is, the combination of aerial and ground based work has the potential to both document changes in abundance/distribution and describe those changes in terms of movements of marked individuals. Parameters will be examined in relation to disturbance using the two-tiered approach developed by Johnson and Gazey (1992). 5. Recommend cost-effective and feasible options for future monitoring programs to evaluate numbers and species of birds potentially impacted by oil spills involving ice-free and ice periods in both inshore and offshore waters.

Biological effects Biology Organochlorines Spatial trends Arctic Persistent organic pollutants (POPs) sea ducks Reproduction Oil and Gas Temporal trends
159. Lake Myvatn and the River Laxá

The aim is to monitor the Lake Myvatn and the river Laxá ecosystem for (1) detecting trends, (2) detecting background variability in the system, (3) assess the efficiency of management measures, (4) observe perturbations in order to generate hypotheses about causal relationships.

Biological effects Biology Populations Catchment studies Fish Spatial trends Environmental management Mining Waterbirds Modelling Biodiversity Arctic Local pollution Food webs Sediments Diet Temporal trends Ecosystems
160. C-ICE 2001

The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.

Atmospheric processes Biology Mapping Climate variability Spatial trends Remote Sensing Sea ice Climate change Shipping Modelling Ice Polar bear Oceanography Arctic Ice cores GIS Energy Balance Food webs Data management MicroWave Scattering Atmosphere Ocean currents Ecosystems Marine mammals