Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 141 - 160 of 196 Next
141. Remote sensing of the radiative properties of arctic aerosols at solar and thermal infrared wavelengths and retrieval of aerosol microphysical properties

The current scientific knowledge does not allow estimating accurately the surface radiative forcing caused by tropospheric aerosols and their influence on the evolution of the Earth climate. The radiative forcing depends on the optical properties of the aerosols at solar and thermal infrared wavelengths. These optical properties depend, in turn, on the chemical composition and size of the aerosols. Remote sensing with passive radiation sensors operating in the above-mentioned spectral ranges allows to measure the optical properties of the aerosols and to characterise their temporal variability. These data are needed for regional climate simulations of the Arctic, particularly for delineating the impact of the Arctic haze phenomenon. In this project, a synergetic effort will be made to obtain information about the radiative and microphysical properties of springtime arctic aerosols. Therefore, a polarisation-spectrometer for the solar spectral range, which is currently developed at the Free University of Berlin as a variant of the FUBISS spectrometer, will be operated from the surface in coincidence with the Fourier Transform InfraRed-spectrometer (FTIR) installed at Ny-Aalesund by the AWI. The former instrument measures the intensity and polarisation of the scattered solar radiation from the visible to the near-infrared. The latter measures the radiation emitted by the Atmosphere itself in the thermal infrared window region. Together, they thus provide a wealth of information about the aerosol optical properties at the interesting wavelengths (spectral optical depth, single-scattering albedo, and asymmetry factor of the phase function), which will allow inferring the aerosol microphysical properties. Complementary measurements of the aerosol microphysical properties will be provided by an aerosol volatility analyser, which is maintained by the University of Leeds and will also be brought to Ny-Aalesund. This instrument comprises a fast response scanning volatility system and an optical particle counter. From the thermal response of the aerosol number and the change in the size distribution conclusions can be inferred about the chemical composition and the state of mixing of aerosols as a function of size.

Aerosols Atmospheric processes Arctic haze FTIR Climate variability Climate Climate change Arctic Atmosphere Troposphere
142. SOGE-FTIR

Aim of the project is to develop a cost-effective long-term European observation system for halocarbons and to predict and assess impacts of the halocarbons on the climate and on the ozone layer. Beside the routine observations within the NDSC it is planned to perform with FTIR (Fourier Transform Infrared Spectroscopy) absorption measurements of CFCs (e.g. SF6, CCl2F2, CHF2Cl) and related species on much more observation days.

Atmospheric processes SOGE Ozone FTIR Climate variability Climate NDSC Climate change Halocarbons Modelling Arctic Atmosphere Temporal trends
143. SCIAMACHY validation with FTIR

The aim of the project is to perform solar and lunar absorption measurements of atmospheric trace gases for the valdation of the SCIAMACHY satellite. Besides the routine observations within the NDSC it is planned to perform more intense measurements, especially during the satellite overpasses.

Atmospheric processes Ozone FTIR Trace gases Climate variability Stratosphere Climate NDSC Climate change Arctic SCIAMACHY Atmosphere Troposphere Satellite validation
144. Marine aerosols with LIDAR and photometer

Situated in the Arctic Ocean the planetary boundary layer over Ny Ålesund is dominated by marine aerosols. Hight and time variation of boundary layer aerosols are examined with the tropospheric lidar system in Ny Ålesund. To determine the aerosol and its optical properties more exactly information from more wavelenghts are necessary as the sun-photometer at the Koldewey Station can provide. First combined evaluation of photometer and LIDAR data during the ASTAR-campaign in spring 2000 demonstrated feasibility and advantages of this method for the free troposphere. Furthermore this method is to be applied on boundary layer aerosol to research also its optical properties.

Aerosols Atmospheric processes Climate variability Climate NDSC ASTAR Climate change Arctic Water vapour Atmosphere LIDAR Troposphere Boundary layer Photometer
145. Arctic Airborne Measuring Program 2002

The subject is to determine the horizontal distribution of aerosol and trace gases by airborne measurements with the Gulfstream III (transarctic flight), ground based measurements in Ny Ålesund (Koldewey Station, Rabben) and satellite measurements with SAGE II / SAGE III. Objective is to get vertical and horizontal aerosol profiles, to research the trace gase variations in the Arctic and to compare remote sensing und in situ measurements.

Aerosols Atmospheric processes Trace gases Climate variability Climate Spatial trends Climate change Arctic Atmosphere
146. Water vapour balloon soundings

In situ measurements of the tropospheric and tropopause and if possible lower stratospheric water vapour content will be carried out with different balloon sondes. Start of up to three balloons with Snow White Sensor-Package prepared by a team from the University of Nagoya and University of Kyoto. Possibly water vapour sondes from NOAA (S. Oltmans) will be started within the scope of an EU-project. This may happen earliest in autumn.

Aerosols Atmospheric processes Climate variability Stratosphere Climate Climate change Soundings Arctic Water vapour Tropopause Atmosphere Tropospere
147. Stratospheric ozone loss determination (Match)

By launching several hundred ozonesondes and by ozone lidar measurements at many Arctic and sub-Arctic stations, one of them Ny-Ålesund, the stratospheric chemical ozone loss will be determined. The launches of all stations will be coordinated by analysis of trajectory calculations based on analysis and forecast wind fields. The aim is to get as many ozone sounding pairs as possible, each of them linked by trajectories in space and time. A statistical description of the ozone differencies given by the first and the second measurement of individual sonde pairs will yield the chemical ozone loss with spatial and time resolution. Four similar campaigns took place in the Arctic and in the mid-latitudes covering the time period of Januar to March in each of the last four winters. In the first three winters high ozone depletion rates (20 - 50 ppbv per day) were determined in some height levels within the polar vortex. In the height level of the ozone maximum an integrated ozone loss (during the winter) in the order of 60 % have been found. These are record ozone losses for the Arctic polar region. In the last winter the ozone depletion rates had been much lower due to moderate temperatures in the stratosphere.

Atmospheric processes Ozone MATCH Climate variability Stratosphere Climate Spatial trends Climate change Ozonesonde Arctic Atmosphere Temporal trends
148. SAMMOA-FTIR

The FTIR (Fourier Transform Infrared Spectroscopy) has been established as a powerful tool for measurements of atmospheric trace gases. Using the sun or moon as light source, between 20-30 trace gases of the tropo- and stratosphere can be detected by their absorption features. The analysis of the spectra allow to retrieve the total zenith columns of the trace gases. The aim of the SAMMOA project is to study the stratospheric ozon depletion during the summer time period. While the processes during winter/spring are investigated in detail the summertime ozone loss has not been studied so far. Therefore FTIR solar absorption measurements of ozone and related species are to be done on much more observation days beside the routine observations within the NDSC

Atmospheric processes Ozone FTIR Trace gases Climate variability stratosphere Climate NDSC Climate change Arctic Summertime ozone loss SAMMOA Atmosphere
149. DOAS measurements of atmospheric trace gases (NDSC)

Quasi-continuous observation of several atmospheric species are performed by measuring the absorption of visible and near ultraviolet sunlight scattered from the sky or in direct moonlight. Column abundance of molecules such as ozone, NO2, OClO, NO3, BrO, HCHO and IO are derived by means of a Differential Optical Absorption (DOAS) algorithm and a radiative transfer model. These activities are part of calibration and validation studies of different satellite experiments (GOME, SAGE III, SCIAMACHY). Since 1999 the instrument is part of the Network of the Detection of Stratospheric Change (NDSC). The instrument has been installed in 1995 as the second UV/vis instrument from the Institute of Environmental Physics. One similar setup in Bremen is continuously running with the exception of short maintenance breaks since 1993.

Atmospheric processes Ozone Trace gases Climate variability Climate NDSC Climate change Arctic DOAS Atmosphere Satellite validation
150. Trace gas measurements by Fourier Transform Infrared Spectroscopy (NDSC)

The FTIR (Fourier Transform Infrared Spectroscopy) has been established as a powerful tool for measurements of atmospheric trace gases. Using the sun or moon as light source, between 20-30 trace gases of the tropo- and stratosphere can be detected by their absorption features. The analysis of the spectra allows to retrieve the total zenith columns of the trace gases. For a few trace gases the pressure broadening of the lines allows to get additionally some information on the vertical concentration profiles. Some important trace gases cannot be detected in the IR but in the UV/VIS. This makes it useful to record the whole spectral region from the IR from about 700/cm (14 µm) to the UV at 33000/cm (300 nm).

Atmospheric processes Ozone OH concentrations Arctic haze Trace gases Climate variability Climate Climate change Arctic Atmosphere Satellite validation
151. Microwave observations of stratospheric trace species in Ny-Ålesund

Microwave radiometers are part of the standard instrumentation at primary NDSC stations and are due to their long-term stability and self calibrating technique especially useful for monitoring purposes. Altitude profiles are retrieved from the shape of the pressure broadened thermally induced emission line of the observed species. The instruments for the observation of stratospheric ozone, chlorine monoxide and water vapour at the Koldewey Station in Ny-Ålesund were developed at the University of Bremen and upgrades and improvements are regularly carried out. The instruments have been automated during recent years and ozone and water vapour observation on Spitsbergen are carried out all year round. Chlorine monoxide is only observed in late winter and early spring, when enhanced concentrations in the lower stratosphere are to be expected. Routine operation and maintenance are done by the station engineer. Data analysis is carried out at the University of Bremen.

Atmospheric processes Ozone Climate variability Climate Chlorine monoxide Climate change Arctic Water vapour Atmosphere Satellite validation
152. Effects of atmospheric aerosol on climate, measured by sun and star photometer

In recent years, much attention has been directed towards understandig the effects of aerosols on a variety of processes in the earth atmosphere. Aerosols play an integral role in limiting visibility, they serve as nuclei for the formation of fog and cloud droplets, they affect the earth radiative budget, and thus climate, both directly and indirectly, and they inhibit the propagation of electromagnetic radiation. The Arctic aerosols, especially Arctic Haze and tropospheric ice crystals possible have important climatic and ecological and global change implications. Since 1991 Sun photometer observations of the polar atmopheric aerosol have been performed at the Koldewey Station in Ny-Aalesund, Spitzbergen. In order to complete the coverage and quality of measurements during the polar night a high sensitive Star photometer is installed since January 1996. Both measurements, the daylight Sun photometer measurements and night Star photometer measurements will be continued.

Aerosols Atmospheric processes Arctic haze Climate variability Long-range transport Climate Climate change Arctic Tropospheric ice crystals Atmosphere
153. Radiation measurements in framework of the Surface Radiation Network - BSRN

The Baseline Surface Radiation Network (BSRN) is a cooperative network of surface radiation budget. Measurement stations operated by various national agencies and universities under the guiding principle set out by the World Climate Research Programme (WCRP). Presently about 15 stations have been established, one of them is Ny-Ålesund. The concept for a Baseline Surface Radiation Network has developed from the needs of both the climate change and satellite validation communities. The aims of the programme are the monitoring of long-term trends in radiation fluxes at the surface and the providing validation data for satellite determinations of the surface radiation budget. The BSRN station Ny-Aalesund was installed in summer 1992 and is regularly operating since August 1992.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Arctic Atmosphere Satellite validation
154. Long Term Monitoring of Solar Radiation in Ny-Ålesund

Permanent monitoring of basic climate data for the purpose of better understanding the Arctic climate processes and detecting trends.

Atmospheric processes UV radiation Geophysics Climate Climate change solar radiation Arctic Atmosphere
155. Determination of stratospheric aerosols by balloon borne sensors

Stratospheric aerosols like Polar Stratospheric Clouds (PSCs) or volcanic aerosols are investigated by different types of balloon borne sensors in co-operation with the University of Nagoya, Japan, and the University of Wisconsin, Laramie, Wisconsin. The sensors flown are dedicated optilca particle counters (OPC) or backscatter sondes (BKS), respectively.

aerosols Atmospheric processes Ozone polar stratospheric clouds Geophysics Climate variability Climate Climate change balloon sonde optical particle counter Arctic PSCs Atmosphere
156. Validation of SAGE III satellite data

SAGE III was successfully launched on 10. Dec. 2001 on a Russian M3 rocket. It provides accurate data of aerosols, water vapour, ozone, and other key parameters of the earth's atmosphere. The science team of the SAGE III experiment at NASA has nominated the Koldewey-Station as an anchor site to contribute within the Data Validation Plan as part of the Operational Surface Networks. Data directly relevant to the SAGE III validation are aerosol measurements by photometers and lidar, as well as temperature measurements and ozone profiling by balloon borne sondes, lidar and microwave radiometer. Data will be provided quasi online for immediate validation tasks.

Atmospheric processes ozone UV radiation trace gases Geophysics Climate variability Climate Climate change aerosol water vapour Data management Atmosphere water vapor satellite validation
157. Investigations of tropospheric aerosols by lidar

A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.

aerosols Atmospheric processes Arctic haze Geophysics tropospheric aerosols Climate variability Long-range transport Climate ASTAR Climate change Arctic Local pollution water vapour Atmosphere troposphere water vapor
158. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV
159. Climate and contamination of the western arctic: monitoring change with the Black Guillemot, an apex marine predator

Examine temporal and spatial variation in trace metal concentrations in the western Arctic through the analysis of Black Guillemot feathers. Temporal trends being examined using study skins collected as early as 1897. Spatial variation examined in conjunction with carbon isotope signatures in feathers and by sampling both winter and summer plumages. Regional climate change monitored through examination of annual variation in breeding chronology and success in relation to snow and ice melt.

Heavy metals Climate variability Spatial trends Climate change Ice Arctic Persistent organic pollutants (POPs) Seabirds Temporal trends
160. C-ICE 2001

The Collaborative Interdisciplinary Cryospheric Experiment (C-ICE) is a multi-year field experiment that incorporates many individual projects, each with autonomous goals and objectives. The science conducted has directly evolved from research relating to one of four general themes: i. sea ice energy balance; ii. numerical modeling of atmospheric processes; iii. remote sensing of snow covered sea ice; and iv. ecosystem studies.

Atmospheric processes Biology Mapping Climate variability Spatial trends Remote Sensing Sea ice Climate change Shipping Modelling Ice Polar bear Oceanography Arctic Ice cores GIS Energy Balance Food webs Data management MicroWave Scattering Atmosphere Ocean currents Ecosystems Marine mammals