Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 121 - 124 of 124
121. The Seasonal Cycle of Organochlorine Concentrations in the Canadian Basin

In September 1997, the CCGS Des Groseillers was frozen into the permanent ice-pack and started a year-long science program drifting across the southern Canada Basin. This program provided a unique opportunity to carry out a "vertical" food-chain study in a seasonal context to learn how the physical and biological systems couple to produce contaminant entry into the food web (Figure 1). "Vertical" components included the water and ice, particles, algae, zooplankton (sorted by trophic level), fish and seal.. The interpretation of contaminant data collected during SHEBA will provide information about the relationship between seasonal ice formation and melt, seasonal atmospheric transport and water column organochlorine concentrations in the Canada Basin. In addition our contaminant sampling program was integrated within a larger science plan where other SHEBA researchers studied the physical and biological properties of the water column. This means that contaminant distributions can be interpreted and modeled within the full context of physical, chemical and biological processes, and of atmospheric and oceanic transport mechanisms.

Pathways Organochlorines PCBs Long-range transport Spatial trends Sea ice Contaminant transport Climate change Oceanography Persistent organic pollutants (POPs) Geochemistry Food webs Temporal trends
122. The high latitude oceans in the climate system, with special emphasis on their role in the global carbon cycle

The scientific objectives of this project is to add information that helps elucidate the role of the Arctic Mediterranean Seas (Arctic Ocean and Nordic Seas) in the climatic system of the Northern Europe. More specifically it has the following aims: - To assess the heat and carbon dioxide fluxes over the air-sea interface in the Barents Sea and elucidate the effect this has on the formation of Arctic Ocean intermediate waters and associated carbon fluxes. - To assess the temporal variability of the fresh water distribution in the Arctic Ocean, both river runoff and sea ice melt, and the affect this has on the outflow of fresh water to the regions of open ocean deep water formation (the Greenland, Iceland and Labrador Seas). - To assess the mixing of upper and intermediate waters along the East Greenland Current that gives the properties of the overflow into the North Atlantic Ocean and thus add to the driving of the thermohaline circulation. This also contributes to the sequestering of anthropogenic carbon dioxide.

Shelf seas Hydrography Climate change Oceanography Arctic Geochemistry
123. Swedish Regional Climate Modelling Programme (SWECLIM)

It has become clear in recent years that a changing composition of the atmosphere due to human activities may influence the climate system. The production of greenhouse gases and their accumulation in the atmosphere can result in a global warming and changes in the climate system. On regional scales, this may result in even much more pronounced changes. This is particularly true for the high northern latitudes. Climate changes will impact the society and nature in many ways. The anticipated effects are large and will matter both globally (mainly negative consequences) and regionally (both negative and positive consequences). SWECLIM provides users with detailed regional climate study results. SWECLIM develops regional (limited area) climate system modeling, studies climate processes and feedback special for the Nordic region and creates regional climate (change) scenarios on a time scale of 50-100 years. SWECLIM also performs impact studies on water resources. Climate scenarios are also made available for other impact studies, such as in forestry, done by external groups. Information activities on climate change and the regional consequences are an important component in the program. The regional climate model system is built around a regional atmospheric model, regional ocean models with sea ice for the Baltic Sea and land surface modeling plus hydrology. The model system is forced at the by large-scale results from global climate models. Multi-year to multi-decade length integrations are performed with the regional model targeting a domain roughly centered on the Nordic countries and using horizontal resolutions ranging from 20-80 km.

Atmospheric processes Climate variability Climate Sea ice Climate change Atmosphere Temporal trends
124. Atmospheric Radiation Measurement (ARM) Program

The North Slope of Alaska/Adjacent Arctic Ocean Cloud and Radiation Testbed (CART) site is providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. The NSA/AAO site is centered at Barrow and extends to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (perhaps to Oliktok). The Adjacent Arctic Ocean was probed by the Surface Heat Budget of the Arctic (SHEBA) experiment, a multi-agency program led by the National Science Foundation and the Office of Naval Research. SHEBA involved the deployment of an instrumented ice camp within the perennial Arctic Ocean ice pack that began in October 1997 and lasted for 12 monthsB. For the planning period covered here, a major focus will be on completing the facilities at Atqasuk, 100 km inland from Barrow. Presently, the instrumentation shelters are located on a gravel pad turn-around at the end of a dead end road between the town of Atqasuk and its airport. To comply with the terms of our land lease, we will construct a platform on pilings adjacent to the gravel pad and move the shelters off the roadway and onto the platform. The platform will permit long-term deployment of the Atqasuk instrumentation in a manner very similar to that at Barrow. Sky radiation (SKYRAD) radiometric instrumentation will be mounted above the level of the roof of the shelters so as to avoid shadowing, and the ground radiation (GNDRAD) instrumentation will be mounted on a tip tower such as the one about to be installed at Barrow. At Atqasuk, during the CY 2000 melt season, the science team heat flux study begun during the CY 1999 melt season will resume in spring with the redeployment of a laser scintillometer. In addition, heat flux measurements will begin near Barrow on the shore of the Beaufort Sea in the same time frame. Also at Barrow, a mini-IOP is planned during spring 2000 that will bring together two extended-range atmospheric emitted radiance interferometers (ER-AERIs) (including the one permanently installed at Barrow), one normal range downward-looking AERI (for snow characterization), and one or two other extended-range upward-looking Fourier transform infrared spectrometers (FTIRs). Various other less major enhancements will be made to the instrumentation suites of both Barrow and Atqasuk. Both facilities, however, will continue to be strongly focused on Instantaneous Radiative Flux (IRF) experiments for this planning period. A Single-Column Model (SCM) experiment utilizing either subscale or full scale aircraft that had been proposed for the NSA/AAO for CY2000 will be put off for a year.

Climate variability Climate Climate change SEARCH