The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 101 - 120 of 194 Next
101. Denmark Contributions to the Global Atmosphere Watch (GAW)

As part of the GAW programme, Denmark contributes to the Global Ozone Observing System (GO3OS) with three stations in Greenland and one in Denmark. The stations in Greenland are: Kangerlussuaq, Pituffik and Illoqqortoormiut The station in Denmark is located in Copenhagen The stations in Greenland are primary and secondary stations in the Network for the Detection of Stratospheric Change (NDSC) that is supported by the International Ozone Commission.

Climate Atmosphere
102. Denmark contributions to the GCOS Upper Air Network (GUAN)

Only one GUAN station is designated for Denmark, Greenland and the Faroe Islands and it is situated in Narsarsuaq (WMO nr. 6186), Greenland. The station is run by DMI and is operated in accordance with the required standard.

Climate Atmosphere
103. Denmark GCOS Surface Network (GSN)

The seven designated GSN stations in Denmark, Greenland and on the Faroe Islands are all run by DMI and include (Numbers are WMO station numbers): Greenland: 4211 Upernarvik, 4250 Nuuk, 4320 Danmarkshavn, 4360 Tasiilaq, 4390 Prins Christian Sund; The Faroe Islands; 6011 Tórshavn Denmark: 6186 Copenhagen. All of these stations currently meet the required standard for surface observation.

Climate Atmosphere
104. Wind resource measurements in Greenland

Wind resources measurements near several settlements to determine whether wind energy can be used as a local energy source and replace fossil fuel. The project concentrates on settlements in Sisimiut and Uummannaq and includes 6 settlements. A standard measurement setup consisting of a 10 m NRG-Systems meteorological mast equipped with a cup anemometer, a wind vane and a thermometer has been installed at each location. A 6 kW demonstration wind turbine has recently been erected in Sarfannguaq to document the potential of merging wind energy with a diesel powered electricity system. Network type: Wind resources

Climate Atmosphere
105. Atmospheric Observations

To acquire atmospheric data in support of both the prediction and detection of severe weather and of climate trend and variability research. This serves a broad range of users including researchers, policy makers, and service providers. Main gaps: Long-term, atmospheric monitoring in the North poses a significant challenge both operationally (e.g. in-situ automated snowfall measurements) and financially (charterd flights for maintenance and calibration).Most monitoring in the North is limited to populated areas. Attempts to develop an AMDAR capacity out of First Air and Canadian North fleets failed due to economical and technical difficulties. As demonstrated through impact studies, benefits of AMDAR in the North would be tremendous, however would require acquisition and deployment of specialized sensing packages such as TAMDAR (which includes measurements of relative humidity), development of datalink capacity through satellite communications (e.g. Iridium), and upgrading some aircraft systems when possible, especially the aircraft navigation systems. Network type: Atmospheric observing stations over land and sea composed of: - Surface Weather and Climate Network: o In-situ land stations comprising both Hourly stations and Daily Climate observations - Marine Networks: o Buoys (moored and drifting) o Ships: Automatic Volunteer Observing System - Upper Air Network: o In situ (radiosonde) o In situ Commercial Aircraft (AMDAR)

Oceanography Atmosphere Human health
106. Sweden Mass and energy exchange

At present there are about 12 micrometeorological tower sites north of 60°N in Sweden that use eddy covariance techniques to measure the exchanges of carbon dioxide, water vapor, energy, and at some sites methane between terrestrial ecosystem and atmosphere on a long-term and continuous basis (Table 5, ##5, 9, 11, 12, 15, 16–22). Among these tower sites, Norunda is the oldest and most complete complete (Table 5, #5). Three towers are in use at Rosindal, 70 km northwest of Umeå, in full-scale nitrogen and carbon dioxide experiments (Table 5, #12). In addition, one site is located at Zackenberg on Greenland (Table 5, #22). At the sites, data on vegetation, soil, and meteorological and hydrological conditions are also collected. The Swedish sites are integrated in the international Fluxnet program that assembles more than 400 eddy covariance sites around the world in an effort to better understand land surface – atmosphere interaction and its role in global change. The Swedish micrometeorological towers are presently financed by research councils, viz. Swedish Research Council (VR) and Formas, EU and university faculties. A European research infrastructure for flux measurements, the Integrated Carbon Observation System (ICOS) is being planned and includes Sweden as one of the participating nations.

107. IRF ozone and other trace gases monitoring + aerosols + thin clouds + wind/structures + atmospheric composition + particle precipitation + ionosphere

The total column amount of ozone and other trace gases are measured with mm-wave instruments, FT-IR and DOAS spectrometers, at IRF in Kiruna (Table 6, #8.1). With the sun or moon as infrared light sources, FT-IR spectrometers can quantify the total column amounts of many important trace gases in the troposphere and stratosphere. At present the following species are retrieved from the Kiruna data: O3 (ozone), ClONO2, HNO3, HCl, CFC-11, CFC-12, CFC- 22, NO2, N2O, NO, HF, C2H2, C2H4, C2H6, CH4, CO, COF2, H2O, HCN, HO2NO2, NH3, N2, and OCS. Together with Russian and Finnish institutes at the same latitude, IRF studies the stratospheric ozone and its dependence on polar atmospheric circulation and precipitation of charged particles. The ground-based instruments are also used to validate satellite measurements of vertical ozone distribution (Odin, SAGE III, and GOME). Aerosols and thin clouds are measured at IRF in Kiruna. For example, researchers use Lidars (Light Detection and Ranging) to measure polar stratospheric and noctilucent clouds. Winds and structures are measured with ESRAD MST radar at IRF in Kiruna. At IRF in Kiruna measurements are used to assess the physical and chemical state of the stratosphere and upper troposphere and the impact of changes on the global climate. Particle precipitation is measured by relative ionospheric opacity meters (riometers) at IRF in Kiruna. Riometers measure the absorption of cosmic noise at 30 and 38 MHz and provide information about particles with energies larger than 10 keV. The electron density of the ionosphere is measured by ionosonds and digisondes at IRF in Kiruna.

Pollution sources Environmental management Atmosphere
108. SEPA Ozone monitoring

SMHI measures the thickness of the ozone layer at 2 sites in Sweden, one at Norrköping in southeast Sweden and one at Svartberget Forest Research Park, Vindeln, 70 km NW of Umeå. At Svartberget a Dobson and a Brewer Spectrophotometer are operational. The measurements are part of SEPA’s Environmental Monitoring Program.

Pollution sources Atmosphere
109. SMHI Mesoscale Atmospheric Transport and Chemistry Model (MATCH)

Calculating deposition in a grid over Sweden showed the lack of information on deposition at high altitude. SMHI applied the meso scale MATCH model to calculate the deposition field and the matched model is called MATCH-Sweden. The result is found at The observations made at these stations are: Particles in air: SO4-S, NO3-N, NH4-N, Cl, Na, Ca, Mg, K Gase:s NH3-N, HNO3-N, SO2-S Deposition open field precipitation: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K Deposition in forest throughfall: H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K To integrate the relatively few deposition measurement sites, SMHI has adopted the Mesoscale Atmospheric Transport and Chemistry Model (MATCH) that uses emission data, meteorological data, routines for chemical processes, and a transport model to calculate long-range transport and deposition of air pollutants (Table 4, #1.5). Time series of gridded data over Sweden for deposition of different inorganic chemical compounds calculated with the MATCH-Sweden model are available at SMHI (Appendix, Table 11). When the MATCH-Sweden model was first tested, the deposition network lacked high elevation sites. Hence, a monitoring program for deposition at higher elevations (Table 4, #1.9) was started. It consists of 4 sites in high elevation forests along the Swedish mountain ridge, where NO3, NH4, NH3, HNO3, SO2, SO4, Na, K, Ca, Mg, Cl, pH, conductivity, and amount of precipitation are analyzed on monthly accumulated precipitation samples.

Atmosphere Environmental management Pollution sources
110. Sweden EMEP air and precipitation chemistry

The subprogram main task is to check if international agreements as the UN Convention on Long Range Transboundary Air Pollution (CLTRAP) are followed. EMEP = European Monitoring and Evaluation Programme. The network comprises 10 stations, out of which three are in northern Sweden. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2, O3 Precipitation quality is monitored by samplers with lid, open only when it rains. The following compounds are measured: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Ozone near ground is analyzed every hour and is part of an European warning system PM10 is particles Metals in air and precipitation is analysed at Bredkälen only. The following elements are analyzed: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, metyl-Hg.

Atmosphere GIS Pollution sources
111. Air and Precipitation Chemistry Network (PMK)

The PMK Network is part of the national network for deposition measurements. The aim is a longterm monitoring concentration and deposition of different air transported compounds. The aim is also to generate knowledge about longterm variation in the deposition field, and to give background data from low polluted areas for calculation of pollution deposition in more polluted areas. The Air and Precipitation Chemistry Network includes about 25 sites (14 in northern Sweden) where precipitation from open accumulating samplers are collected and analyzed for pH, SO4, NO3, NH4, Cl, Ca, Mg, Na, K, conductivity, and amount of precipitation (Table 4, #1.2). At 3 sites (one in northern Sweden) precipitation is analyzed for heavy metals, mercury, and methyl-mercury (Table 4, #1.3).

Climate Pollution sources Atmosphere
112. Norunda CO2, methane and gas fluxes

At the top of the micrometeorological tower (102 m) at Norunda north of Uppsala, carbon dioxide and methane concentrations are also measured.

Climate Atmosphere
113. IRF Weather station

at the Institute for Space Physics (IRF) in Kiruna, an automated weather station logging air temperature, humidity, wind, pressure, and UV-radiation has been in operation since 1996

Climate Atmosphere
114. Abisko Scientific Research Station (ANS) (ANS)

Investigations within many areas of biosciences and geosciences are carried out at the station. The emphasis of staff research is on plant ecology and meteorology. The main objectives of the ecological projects are to study the dynamics of plant populations and to identify the controlling factors at their latitudinal and altitudinal limits. The meteorological projects deal with recent climate changes in the region, and also with local variations of the microclimate in subalpine and alpine ecosystems.

Atmosphere Climate Ecosystems Environmental management
115. SLU, Faculty of Forestry, Unit for Forest Field Research, experimental forests

The Faculty of Forestry at SLU has two research stations with experimental forests, two experimental forests with permanent staff, three without permanent staff and a large number of long-term field trials. These facilities are spread over the country.

Climate Environmental management Atmosphere Ecosystems
116. SMHI Climate monitoring

The Swedish Meteorological and Hydrological Institute (SMHI) performs basic climate measurements (Table 2 and Table 6, #1) in an irregular grid over the country (Fig. 1). For non-commercial research and educational purposes, data from the core services are made available at handling costs only. The meteorological base network (Table 6, ##1.1–1.6) north of 60°N consists of 105 stations; Table 2 lists the different observation programs. In addition to the meteorological base network, SMHI operates several other climate stations with a variety of instrumentation. Main gaps: The meteorological base network was biased toward lowland in populated areas, originally because potential observers were more likely to be found there. This problem has been partly overcome since the introduction of automated sampling systems. Still there has been a need for climate measurements in forested areas on higher grounds. Network type: National monitoring

117. Physics, Chemistry and Biology of Atmospheric Composition and Climate Change, Finnish Center of Excellence

The main objective is to study the importance of aerosol particles on climate change and on human health. Particularly, the focus will be on the effect of biogenic aerosols on global aerosol load. During the recent years it has become obvious that homogeneous nucleation events of fresh aerosol particles take frequently place in the atmosphere, and that homogeneous nucleation and subsequent growth have significant role in determining atmospheric aerosol load. In order to be able to understand this we need to perform studies on formation and growth of biogenic aerosols including a) formation of their precursors by biological activities, b) related micrometeorology, c) atmospheric chemistry, and d) atmospheric phase transitions. Our approach covers both experimental (laboratory and field experiments) and theoretical (basic theories, simulations, model development) approaches.

Atmospheric processes UV radiation Climate Atmosphere
118. Atmospheric Monitoring Network for Antropogenic Pollution in Polar Regions (ATMOPOL)

The project aims at establishing a long-term Arctic-Antarctic network of monitoring stations for atmospheric monitoring of anthropogenic pollution. Based upon the long and excellent experiences with different scientific groups performing air monitoring within the Arctic Monitoring and Assessment Programme (AMAP), an expanded network will be established including all AMAP stations and all major Antarctic “year-around” research stations. As an integrated project within the “International Polar Year 2007-08” initiative, the ATMOPOL co-operation intend to • Establish a long-term coordinated international Arctic-Antarctic contaminant programme. • Develop and implement a joint sampling and monitoring strategy as an official guideline for all participating stations. • Support bi-polar international atmospheric research with high-quality data on atmospheric long-range transport of contaminants (sources, pathways and fate). • Support future risk assessment of contaminants for Polar Regions based on effects of relevant contamination levels and polar organisms Based upon the well-established experiences of circum-Arctic atmospheric contaminant monitoring in the Arctic under the AMAP umbrella, a bi-polar atmospheric contaminant network will be established and maintained. In conjunction with the polar network of atmospheric monitoring stations for air pollution, surface-based and satellite instrumentation will be utilised to provide the characterization of the Arctic atmospheric-water-ice cycle. Together with numerical weather prediction and chemical transport model calculations, simultaneous measurements of pollutants at various locations in the Arctic and Antarctic will enhance our understanding of chemical transport and distribution as well as their long-term atmospheric trends. In addition to investigating the importance of atmospheric transport of pollutants an understanding of the transference and impact of these pollutants on both terrestrial and marine environments will be sought. A secretariat and a “scientific project board” will be established. During this initial phase of the project (2006), a guideline on priority target compounds, sampling strategies, equipment and instrumentation, analytical requirements, as well as quality assurance protocols (including laboratory intercalibration exercises) will be developed and implemented. The ATMOPOL initiative aims to address highly relevant environmental change processes and, thus, will strive to answering the following scientific questions: • How does climate change influence the atmospheric long-range transport of pollutants? • Are environmental scientists able to fill the gaps in international pollution inventories and identification of possible sources for atmospheric pollution in Polar Regions? • What are the differences in transport pathways and distribution patterns of various atmospheric pollutants between Arctic and Antarctic environments? Why are there such differences? What is the final fate of atmospherically transported pollutants and how does this impact on the environment and indigenous people?In order to understand the underlying atmospheric chemistry of pollution, e.g. atmospheric mercury deposition events, routine surface measurements of UV radiation as well as campaign related measurements of UV radiation profiles will also be included.The project will establish a cooperative network on atmospheric contaminant monitoring in Polar Regions far beyond the IPY 2007/08 period and is, thus, planned as an “open-end” programme. All produced data will be available for all participating institutions for scientific purposes as basis for joint publications and reports from the ATMOPOL database to be developed.

Pathways Atmospheric processes Heavy metals Long-range transport Contaminant transport Persistent organic pollutants (POPs) Atmosphere
119. IOANA

The project IOANA proposes to better understand the intimate coupling between ozone mixing ratios and particulate nitrate isotopic characteristics. Ozone Depletion Events which occur in Arctic coastal locations shortly after sunrise are a subject of interest per se (scientifically challenging for two decades) but also provide a context in which ozone mixing ratios are highly variable, enabling to characterize the dynamic of correlation and process studies with a resolution of a day. This is a first step towards the use of the isotope tool in reconstructions of the oxidative capacity of the atmosphere. This programme is a preparation of the IPY-OASIS project and propose to coodinate a set of collaborations than will be effective duing the International Polar Year.

Atmospheric processes Sources Ozone Arctic haze Long-range transport Pollution sources Climate change stable isotopes Arctic Ice cores nitrogen nitrate Atmosphere

The 2004-2007 scientific research program CHIMERPOL II consists in improving the results obtained during the CHIMERPOL I programme around three main ideas: 1-Understand physico-chemical processes of oxidation of elemental gaseous mercury in the atmosphere during Mercury Depletion Events (MDE) in Corbel, Svalbard from 2004 to 2007 with a continuous monitoring station for gaseous mercury and its speciation, 2-Evaluate deposition and emission fluxes of mercury above the Arctic snow pack by a continuous monitoring of these fluxes in Corbel, Svalbard and in Station Nord, Greenland, from 2005 to 2007. 3-Determine the Air-Snow-Firn-Ice transfer function for mercury and its speciation with a complete balance of mercury in the different compartments in Summit, Greenland from 2006 to 2007.

Ozone Heavy metals Contaminant transport Radionuclides Ice cores Atmosphere