The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 101 - 120 of 129 Next
101. UV-A/UV-B measurements

The changes in the stratospheric ozone layer due to anthropogen emissions lead to an increasing insolation of sunlight in the UV-B range (280nm - 320nm) on ground. One of the major objects of UV-B measurements is to detect long-term trends. The most interesting areas corresponding to ozone depletion are Antarctica and more recently the region around the northern pole. In interdisciplinary cooperation the data are also basis for research in the effects of increasing UV-B doses on plankton, algae, and other organisms. Since 1998 additional measurements of UV-A radiation (320-400nm) are done.

UV-B Biological effects Ozone trend measurements UV radiation Climate Climate change Arctic Atmosphere Temporal trends UV-a
102. Trace gas measurements by Fourier Transform Infrared Spectroscopy (NDSC)

The FTIR (Fourier Transform Infrared Spectroscopy) has been established as a powerful tool for measurements of atmospheric trace gases. Using the sun or moon as light source, between 20-30 trace gases of the tropo- and stratosphere can be detected by their absorption features. The analysis of the spectra allows to retrieve the total zenith columns of the trace gases. For a few trace gases the pressure broadening of the lines allows to get additionally some information on the vertical concentration profiles. Some important trace gases cannot be detected in the IR but in the UV/VIS. This makes it useful to record the whole spectral region from the IR from about 700/cm (14 µm) to the UV at 33000/cm (300 nm).

Atmospheric processes Ozone OH concentrations Arctic haze Trace gases Climate variability Climate Climate change Arctic Atmosphere Satellite validation
103. Microwave observations of stratospheric trace species in Ny-Ålesund

Microwave radiometers are part of the standard instrumentation at primary NDSC stations and are due to their long-term stability and self calibrating technique especially useful for monitoring purposes. Altitude profiles are retrieved from the shape of the pressure broadened thermally induced emission line of the observed species. The instruments for the observation of stratospheric ozone, chlorine monoxide and water vapour at the Koldewey Station in Ny-Ålesund were developed at the University of Bremen and upgrades and improvements are regularly carried out. The instruments have been automated during recent years and ozone and water vapour observation on Spitsbergen are carried out all year round. Chlorine monoxide is only observed in late winter and early spring, when enhanced concentrations in the lower stratosphere are to be expected. Routine operation and maintenance are done by the station engineer. Data analysis is carried out at the University of Bremen.

Atmospheric processes Ozone Climate variability Climate Chlorine monoxide Climate change Arctic Water vapour Atmosphere Satellite validation
104. Effects of atmospheric aerosol on climate, measured by sun and star photometer

In recent years, much attention has been directed towards understandig the effects of aerosols on a variety of processes in the earth atmosphere. Aerosols play an integral role in limiting visibility, they serve as nuclei for the formation of fog and cloud droplets, they affect the earth radiative budget, and thus climate, both directly and indirectly, and they inhibit the propagation of electromagnetic radiation. The Arctic aerosols, especially Arctic Haze and tropospheric ice crystals possible have important climatic and ecological and global change implications. Since 1991 Sun photometer observations of the polar atmopheric aerosol have been performed at the Koldewey Station in Ny-Aalesund, Spitzbergen. In order to complete the coverage and quality of measurements during the polar night a high sensitive Star photometer is installed since January 1996. Both measurements, the daylight Sun photometer measurements and night Star photometer measurements will be continued.

Aerosols Atmospheric processes Arctic haze Climate variability Long-range transport Climate Climate change Arctic Tropospheric ice crystals Atmosphere
105. Radiation measurements in framework of the Surface Radiation Network - BSRN

The Baseline Surface Radiation Network (BSRN) is a cooperative network of surface radiation budget. Measurement stations operated by various national agencies and universities under the guiding principle set out by the World Climate Research Programme (WCRP). Presently about 15 stations have been established, one of them is Ny-Ålesund. The concept for a Baseline Surface Radiation Network has developed from the needs of both the climate change and satellite validation communities. The aims of the programme are the monitoring of long-term trends in radiation fluxes at the surface and the providing validation data for satellite determinations of the surface radiation budget. The BSRN station Ny-Aalesund was installed in summer 1992 and is regularly operating since August 1992.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Arctic Atmosphere Satellite validation
106. Long Term Monitoring of Solar Radiation in Ny-Ålesund

Permanent monitoring of basic climate data for the purpose of better understanding the Arctic climate processes and detecting trends.

Atmospheric processes UV radiation Geophysics Climate Climate change solar radiation Arctic Atmosphere
107. Leaf unfolding and leaf fall phenology in the mountain birch

Relating budburst and leaf absicssion in the mountain birch to climatic conditions.

Biology Climate
108. Determination of stratospheric aerosols by balloon borne sensors

Stratospheric aerosols like Polar Stratospheric Clouds (PSCs) or volcanic aerosols are investigated by different types of balloon borne sensors in co-operation with the University of Nagoya, Japan, and the University of Wisconsin, Laramie, Wisconsin. The sensors flown are dedicated optilca particle counters (OPC) or backscatter sondes (BKS), respectively.

aerosols Atmospheric processes Ozone polar stratospheric clouds Geophysics Climate variability Climate Climate change balloon sonde optical particle counter Arctic PSCs Atmosphere
109. Validation of SAGE III satellite data

SAGE III was successfully launched on 10. Dec. 2001 on a Russian M3 rocket. It provides accurate data of aerosols, water vapour, ozone, and other key parameters of the earth's atmosphere. The science team of the SAGE III experiment at NASA has nominated the Koldewey-Station as an anchor site to contribute within the Data Validation Plan as part of the Operational Surface Networks. Data directly relevant to the SAGE III validation are aerosol measurements by photometers and lidar, as well as temperature measurements and ozone profiling by balloon borne sondes, lidar and microwave radiometer. Data will be provided quasi online for immediate validation tasks.

Atmospheric processes ozone UV radiation trace gases Geophysics Climate variability Climate Climate change aerosol water vapour Data management Atmosphere water vapor satellite validation
110. Contributions to the THESEO 2000 / SOLVE campaign

In preparation to the launch of the SAGE III experiment in March 2001, NASA and the European Union performed the SOLVE/THESEO-2000 campaign, which had three components: (i) an aircraft campaign using the NASA DC-8 and ER-2 airplanes out of Kiruna/Sweden, (ii) launches of large stratospheric research balloons from Kiruna, (iii) validation exercises for the commissioning phase of SAGE III. The German Arctic research station Koldewey in Ny-Ålesund/Spitsbergen contributed to (i), (ii), and (iii) by performing measurements of stratospheric components like ozone, trace gases, aerosols (PSCs), temperature and winds. The main observation periods were from December 1999 to March 2000.

Atmospheric processes Ozone UV radiation Climate variability Climate Climate change Arctic Atmosphere
111. Investigations of tropospheric aerosols by lidar

A tropospheric lidar system with a Nd:YAG-Laser was installed at the Koldewey-Station in 1998. It operates at a laser wavelengths of 355, 532, and 1064 nm with detection at 532 nm polarised and depolarised, and at Raman wavelengths like 607nm (nitrogen). It records profiles of aerosol content, aerosol depolarisation and aerosol extinction. During polar night the profils reach from the ground up to the tropopause level, while during polar day background light reduces the altitude range. The main goal of the investigations is to determine the climate impact of arctic aerosol. Analysis of the climate impact will be performed by a high resolution regional model run at the Alfred Wegener Institute (HIRHAM). The lidar system is capable to obtain water vapour profiles in the troposphere. Water vapour profiles are crucial for the understanding of the formation of aerosols. The water vapour profiles are also used for the validation of profiles measured by the CHAMP satellite from 2001 onwards.

aerosols Atmospheric processes Arctic haze Geophysics tropospheric aerosols Climate variability Long-range transport Climate ASTAR Climate change Arctic Local pollution water vapour Atmosphere troposphere water vapor
112. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV
113. Energy balance of the Greenland Ice Sheet

Analysis of the energy balance terms obtained during the measuring campaign in 1991 at Greenland. It deals with profile and turbulence measurements, RASS-SODAR observations and radiation measurments.

mass balance Climate variability Climate Climate change Ice Ice sheets
114. Land ice, climate change and sea level

Land ice forms an important component of the climate system. Sea level variations are closely related to the total ice volume. Purpose of the research project is to obtain a better understanding of how glacier fluctuations and climate change are linked. This is a prerequisite to make more accurate predictions of future sea level.

Glaciers Climate variability Climate Climate change sea-level change Ice Ice sheets
115. Paleeoecology and (periglacial) eolian sediment transfer in the ice-sheet marginal zone of southwestern Greenland (Kangerlussuaq region)

The project aims at reconstructing the environmental history in the interior Kangerlussuaq region since deglaciation. Focus is placed on the lacustrine and eolian sediments to decipher climate evolution in terms of temperature, evaporation- precipitation balance and phases of high- wind speed events. The overall objectives are to build a high-resolution (decadal-to-century scale) chronostratigraphic framework for past climate variability from the analysis of organic-rich lake sediments and peat filled basins using a variety of sediment analysis techniques (magnetostratigraphy, grainsize, sedimentfractionation techniques, AMS 14C dating, diatom-, pollen- and macrofossil analysis) and sedimentology. Research activities diatom analysis, pollen analysis, magnetic susceptibility, automated correlation techniques, grainsize, organic chemistry, sediment fractionation techniques, AMS radiocarbon dating, sedimentology, mapping, sediment transport and erosion measurements/monitoring, micro-meteorology, vegetation mapping, pollen rain studies, diatom salinity training sets, limnology

Glaciers Geology eolian Climate variability Climate sedimentology Climate change Quaternary geology Ice sheets Geochemistry Sediments paleeoecology geomorphology periglacial paleolimnology
116. Geomorphology, climate and specific phenomena in the periglacial

Periglacial conditions have characterized the geomorphological development of river systems and have activated eolian processes during the Quarternary ice ages in Europe. Frost and melt mechanisms have also caused deformations on micro and macro scale in soil and sediments. Specific periglacial phenomena are indicative for (paleo-) climatic conditions

Geology Climate variability paleoclimatology Climate Climate change geomorphology periglacial
117. Palaeobotany and palynology

In the wake of topical research issues such as global change and energy resources, one can recognize two priority targets for the study of fossil plant remains: - insight into the role of land plants and phytoplankton as monitors, recorders, motors and moderators of climatic and environmental change; -insight into the predictive value of organic remains with respect to genesis, composition, occurrence, quality and quantity of fossil fuel reserves. In harmony with these targets, current research at the Laboratory of Palaeobotany and Palynology (LPP) is aimed to provide for basic contributions to the palaeoecological study and interpretation of Palaeozoic, Mesozoic and Cenozoic plant life. Four interconnected areas of scientific emphasis are currently distinguished: - biotic change: documentation and causal analysis of changes of past plant biota in terrestrial and marine environments, both at short and long time-scales; - selective preservation: identification of the biological, physical and chemical factors that determine selective preservation of organic matter during transport, sedimentation and burial; - methodology: development and introduction of new analytical methodology relevant to the study and interpretation of fossil plant remains; - systematics: generation and compilation of systematic data aimed at the accurate identification and classification of fossil plant remains. Overview of results LPP strives after a balance between the study of land plant remains and organic-walled marine phytoplankton (mainly dinoflagellates). Research objectives are related to both short (latest Pleistocene-Holocene) and long time-scales (late Palaeozoic-Cenozoic). Short time-scales Modern land plant communities can be understood only in the light of their history since the onset of the last deglaciation (15,000 yr BP). In western and southern Europe this history is governed by the climatically induced spread of forest communities and their subsequent recession as man's influence expanded. Through fine-scale analysis (temporal and spatial, as well as systematic), of assemblages of microscopic and macroscopic plant remains, research concentrates on the accurate discrimination between autogenic, climatically induced, and anthropogenic vegetational change in contrasting physiographic entities: (1) crystalline mountains in France and the Iberian peninsula; (2) landscapes characterized by Pleistocene-Holocene eolian (sand, loess) deposition in the Netherlands and Germany; (3) fluvial plains in the Netherlands; (4) littoral landscapes in Portugal, and (5) Arctic landscapes of Spitsbergen, Jan Mayen and Greenland. Following earrlier research experiences with respect to the palaeoecological analysis of pollen assemblages from the Vosges (France), in the research period special attention was given to deciphering the complex, altitude related, late Pleistocene-Holocene pollen signals from other low mountain ranges. Results have demonstrated that the spatial distribution of vegetation patterns can be followed through time by recognizing: (1) common time-proportionate trends in pollen values, and (2) local pollen components characteristic for altitudinal vegetation zones and lake/mire development. Long time-scales For the recognition and evaluation of biotic change on long time-scales, LPP concentrates on the study of land plant and phytoplankton records from sedimentary successions that contrast with respect to: (1) time of formation (selected late Palaeozoic, Mesozoic and Cenozoic intervals); (2) paleotectonic and palaeogeographic history (intracratonic; passive and active plate margins); (3) depositional environment (terrestrial to deep-marine); and (4) biogeographic provinciality. Temporal and spatial distribution patterns of plant remains are explored for proxy variables indicative of terrestrial and marine environmental change. Investigated variables include land temperature, humidity, precipitation, runoff, sea-level, sea surface temperature, salinity, nutrient supply, productivity, organic burial rate and CO2 level. In the review period particular attention has been given to the development of palaeoecological models of dinoflagellate cyst distribution in marine sediments. It has been shown that: (1) the potential of dinoflagellates in Mesozoic and Cenozoic time-resolution may frequently exceed that of planktonic foraminifera and calcareous nannoplankton, and (2) dinoflagellates can be applied in novel ways to further the environmental understanding of depositional sequences and sedimentary cycles defined by physical (seismic, sedimentological) analysis. Although research related to global change programmes is generally restricted to the Late Tertiary-Quaternary, there is one notable exception. It is recognized that a better understanding of the patterns and processes of past mass extinctions can contribute to an understanding of present and future man-induced extinction processes. Work by LPP concentrates on the profound biotic crises at the Permian/Triassic (P/Tr) and Cretaceous/Tertiary (K/T) junctions. Study of the P/Tr land plant record has now revealed ecosystem collapse in the terrestrial biosphere. At the K/T junction, it has been demon-strated that dinoflagellates have remained immune to extinction. Independent of configurations predicted by meteorite-impact or massive volcanism, therefore, palynological studies enable high-resolution reconstruction of environmental change, both during pre-crisis times and the phases of K/T ecosystem decline and recovery.

Geology palaeobotany Climate variability Climate Climate change palynology Sediments
118. Permafrost in the Usa Basin: distribution, characterisation, dynamics and effects on infrastructure

- To support the further development of a geocryological database for the Usa Basin (East-European Russian Arctic), including key characteristics of permafrost such as distribution, coverage, temperature, active layer, etc. - To create GIS-based permafrost maps at the scale of 1:1,000,000 for the entire Usa Basin and at 1:100,000 for selected key sites. - To reconstruct the history of permafrost dynamics at key sites in the region over the last thousands of years using palaeoecological analysis and radiocarbon dating of peat deposits, and over the last few decades using remote sensing imagery and/or monitoring (base case scenario). - To predict permafrost dynamics at key sites in the region under future conditions of climate change (20-100 yrs), using a 1-dimensional permafrost model (future global change scenario). - To assess the effects of permafrost dynamics under base case and global change scenarios on urban, industrial and transportation infrastructure in the Usa Basin. Research activities Based on several representative sites, late Holocene permafrost dynamics will be characterized using palaeoecological techniques. Variability in permafrost conditions over the last few decades will be studied based on the available data from long-term monitoring station records and from a time series of remote sensing images (optional). Mathematical modelling of permafrost dynamics will be carried out for at least two sites and a forecast of permafrost degradation in the area under anticipated climate warming will be developed. The likely effects of permafrost degradation upon regional infrastructure (inhabited localities, heat and power engineering, coal and ore mines, oil and gas extracting complex, pipelines and railways) will be analyzed using a GIS approach. GIS data layers on permafrost dynamics and infrastructure will be compared in order to delimitate high risk areas based on existing infrastructure and anticipated permafrost degradation. Hereafter, the created GIS may serve as a basis for more detailed forecasting of permafrost dynamics under both natural and anthropogenic climate changes in lowland and alpine areas of the East-European Russian Arctic.

geocryology Geology palaeoecology Soils Catchment studies Mapping Geophysics Climate variability Climate Spatial trends Environmental management Climate change Modelling Ice GIS Permafrost Oil and Gas Temporal trends permafrost dynamics infrastructure
119. Late Quaternary paleoceanography of the Denmark Strait Overflow Pathway

The global thermohaline circulation is driven by sinking of cold, dense surface waters in the Greenland and Norwegian Seas and its replacement by warmer surface water from lower latitudes. This global circulation system, the conveyor belt, is the main regulator of global climate. Even slight disturbances of this delicate system will cause significant climate changes, especially for NW Europe. While the current hydrographical situation and associated overflow pathways are well-documented, paleoceanographic studies of the Greenland and Faroe/Shetland (F/S) overflow pathways are still scarce. The F/S pathway is presently the subject of study of the MAST program (ENAM project). This project focusses on the late Quaternary overflow history of the important East Greenland pathway. High resolution multichannel sleevegun seismic data recently collected by the Geological Survey of Greenland and Denmark (GEUS) allowed identification of suitable box- and piston-coring sites. Results from the high-resolution cores, allowing direct correlation with regional atmospheric changes documented in the Greenland ice-cores will provide new information on causes and mechanisms of climate change. The continental slope and rise off SE-Greenland can be considered as a potential key area for paleoceanographic and paleoclimatic studies, since: 1) The area is located in the immediate vicinity of the Denmark Strait arctic gateway for water mass exchange between the Arctic and Atlantic ocean. Recent hydrographic measurements (Dickson 1994) demonstrate the important role of the area with regard to hydrographic processes contributing to the formation of NADW. 2) The seafloor morphology and information from multichannel seismic recording shows the presence of numerous large detached sediment drifts and other drift-related features, which will provide important paleoceanographic information as outlined before. 3) The distribution and architecture of the sediment drifts is also affected by down-slope processes transporting upperslope/shelf sediments of mainly glacial origin. Thus the area offers an unique opportunity to study the sediment drifts both with regard to the (paleo)oceanic flow regime and the climatically-inherited signal from the down-slope sediment input. Research activities: All research is directed towards documentation of high resolution natural climate variability during the late Quaternary. Separate topics include: 1. Seismic/sidescan sonar studies 2. High resolution quantitative micropaleontology (planktonic/benthic foraminifera, diatoms, calcareous nannoplankton, dinoflagellates) 3. High resolution stable oxygen/carbon isotope studies 4. DNA studies on planktonic foraminifera (with University of Edinburgh)

Climate variability Climate Climate change Oceanography Ice cores micropaleontology Ocean currents paleoceanography
120. Climate development in Polar areas during the last 1000 years

This project studies the climate development in polar areas during the last 400 years using the results of pollen analysis of soil samples collected in the Arctic regions, and written information collected in Dutch archives. Dutch sailors were sailing in Arctic waters already long before Willem Barentsz tried to find the northeast passage to China and India in the 1590s. They reported their observations to their principals and these reports are sometimes preserved. In this way written sources with much information about may aspects of the Atlantic Arctic are kept in reports in the Dutch archives. In these reports valuable information about the weather in the last 400 years is registered and also if serial these data can be interpreted as climate information. In combination with the information of the pollendiagrams of the collected soil samples, it will be possible to reconstruct the climate development in the Arctic in the last 400 years.

Soils Climate variability paleoclimatology Climate Climate change