The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 20 of 108 Next
1. GeoBasis - Zackenberg

The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes meteorology, carbon flux and energy exchange, snow cover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and – sediment

Active layer Arctic Atmosphere carbon cycle Carbon dioxide CH4 Climate change CO2-flux measurements Energy Balance geomorphology Hydrology Hydrometeorology meteorology Permafrost Snow and ice properties snow cover Soils
2. Zackenberg Ecosystem Monitoring (ZERO) (ZERO)

The objective of the station is to facilitate ecosystem research in the High Arctic. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Nuuk Ecological Research Operations (see below) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics

Soils Climate Sea ice Oceanography Ecosystems
3. Nuuk Basic Ecosystem Monitoring (NERO) (NERO)

The objective is to allow comparative studies of ecosystem dynamics in relation to climate variability and change in respectively a high arctic and low arctic setting as Nuuk Basic comprises the same components as Zackenberg. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Zackenberg Ecological Research Operations (see above) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics

Soils Climate Sea ice Oceanography Ecosystems
4. In situ pCO2 and pH in sea ice in more detail

The purpose of this project is to measure and calculate pCO2 and pH in high Arctic coastal sea ice. The measured pCO2 and pH values can be compared to the calculated values ​​based on measurements of salt, temperature, TCO2 and TA ratios in the sea ice, which will be measured concurrently. Since algorithms for pCO2 calculations have not yet been developed for sea ice, this will contribute with useful knowledge.

(biosphere-atmosphere) interaction
5. GeoBasis Disko 2017-2018

The GeoBasis Disko monitoring program started in 2017 as a part of the cross disciplinary Greenland Environmental Monitoring (GEM) program. GeoBasis Disko is an integrated part of the GeoBasis program, following the same standards as in Nuuk and Zackenberg (two other GEM sites) and largely focusing on the same parameters and methodologies. GeoBasis Disko is finaced by Danish Ministry of Energy, Utilities and Climate.

A close collaboration and synergy with Arctic Station that is manned year round makes it possible to collect and carry out measurements also during winter.As location Qeqertarsuaq on the south coast of the Disko island, represent a Greenlandic west coast climate, with annual mean temperatures just below 0°C, with discontinuous permafrost, and as such remarkably different from the two existing GEM sites. Further, the Disko bay area is highly interesting from a socioeconomic perspective due its high population and active fishery industry, and as one of the most popular tourist destinations in Greenland.

The primary objective of GeoBasis Disko is to establish baseline knowledge on the dynamics of fundamental abiotic terrestrial parameters within the environment/ecosystem around Arctic Station. This is done through a long term collection of data that includes the following sub-topics;

  • Snow properties; including spatial and temporal variation in snow cover, depth and density.
  • Soil properties; spatially distributed monitoring of key soil parameters such as temperature, moisture, and concentration of nutrient ions
  • Meteorology; monitoring of essential meteorological variables across various surface types and elevations.
  • Gas Flux monitoring; plot and landscape scale flux monitoring of CO2, H2O and energy in wet and dry ecosystems.
  • Hydrology; monitoring of seasonal variation in river water discharge, chemistry and suspended sediment.
  • Geomorphology; monitoring of shorelines, coastal cliff foots and cross-shore profiles.

GeoBasis focuses on selected abiotic parameters in order to describe the state of Arctic terrestrial environments and their potential feedback effects in a changing climate. As such, inter-annual variation and long-term trends are of paramount importance.



Active layer Arctic CO2 gas exchange Digital camera Energy Balance freshwater geomorphology Hydrology Monitoring riverine transport Sea ice snow cover Soil water suspended solids terrestrial ecosystem
6. Environmental Monitoring System for Svalbard and Jan Mayen

MOSJ (Environmental Monitoring of Svalbard and Jan Mayen) is an environmental monitoring system and part of the Government’s environmental monitoring in Norway. An important function is to provide a basis for seeing whether the political targets set for the development of the environment in the North are being attained

Atmosphere Ecosystems Human health Oceanography
7. Greenland ice sheet meltwater and sediment discharge monitoring at Watson River, Greenland

Ice sheet meltwater and sediment discharge is measured at only very few sites in Greenland. The measurements provide detailed insights into ice sheet surface melting, englacial meltwater routing, subglacial erosion, etc., and their importance increase with the lengthening of the time series. Monitoring was initiated by IGN (Copenhagen University) in 2006, and taken over by the Geological Survey of Denmark and Greenland in 2014. Data are available through the Programme for Monitoring of the Greenland Ice Sheet (

ablation arctic climate Climate variability Discharges Greenland ice sheet marine and freshwater sediments melt surface heat and mass balance
8. Programme for Monitoring of the Greenland Ice Sheet (PROMICE)

The main objective is to quantify the annual mass loss of the Greenland ice sheet, track changes in the extent of local glaciers and ice caps, and track changes in the position of the ice-sheet margin. Network type: - Observing and modelling the ice-sheet surface-mass balance - Quantifying the mass loss caused by iceberg calving - Monitoring the change of glaciers and ice caps in Greenland - Outlook

ablation Greenland Greenland ice sheet Ice ice dynamics
9. Quantifying and reducing uncertainty in model calculations of global pollution fate

The main objective of the project is to describe quantitatively with model calculations the global distribution behaviour of persistent organic contaminants, and to establish credibility in the results of these simulations.

Arctic Contaminant transport Exposure Long-range transport Modelling PCBs Persistent organic pollutants (POPs) Pesticides Pollution sources Spatial trends Temporal trends
10. DTU Space Permanent GNSS stations in Greenland

Dual purpose: Supporting geographical infrastructure in and around Greenland Monitoring changes in Greenland ice sheet as part of GNET


1. The WMO facilitates worldwide cooperation in the establishment of networks of stations for the making of meteorological observations as well as hydrological and other geophysical observations related to meteorology. Observing stations are operated by WMO Members according to agreed standards and recommended practices described in the WMO Regulatory Material, such as Technical regulations, WMO-No. 49 and its Annexes.

2. The WMO requirements for observational data are generally divided into three categories: global, regional and national. For example, surface synoptic stations are expected to report every six hours for global exchange and every three hours for regional exchange, however with higher frequency on bilateral and multilateral arrangements. The details of the observational programmes provided by all stations operated by WMO Members are given in the WMO Observing Systems Capability Analysis and Review Tool (OSCAR) and available on the WMO website at

3. The approved operational procedures and practices are given in the regularly updated Manual on the Global Observing System (WMO-No. 544), and the Manual on the WMO Integrated Global Observing System (WMO-No. 1160) available also on the WMO website at and, respectively.

4. Under the Global Observing System of the World Weather Watch Programme, WMO Members operating stations in the Arctic Monitoring and Assessment Programme (AMAP) area (essentially includes the terrestrial and marine areas north of the Arctic Circle (66°32N), and north of 62°N in Asia and 60°N in North America, modified to include the marine areas north of the Aleutian chain, Hudson Bay, and parts of the North Atlantic Ocean including the Labrador Sea), contribute to the implementation of the observational programme by operating 336 surface Regional Basic Synoptic and 156 Regional Basic Climatological stations. A detailed infomration is available through WMO OSCAR: 

Atmosphere Climate
12. North Slope Science Initiative (NSSI) (NSSI)

This mission of the North Slope Science Initiative is to improve the regulatory understanding of terrestrial, aquatic and marine ecosystems for consideration in the context of resource development activities and climate change. The vision of the North Slope Science Initiative is to identify those data and information needs management agencies and governments will need in the future to develope management scenarios using the best information and mitigation to conserve the environments of the North Slope

Ecosystems Human health Oceanography
13. International Arctic Systems for Observing the Atmosphere (IASOA)

The main mission of the International Arctic Systems for Observing the Atmosphere (IASOA) is coordination of atmospheric data collection at existing and newly established intensive Arctic atmospheric observatories. Data of interest to the IASOA consortium include measurements of standard meteorology, greenhouse gases, atmospheric radiation, clouds, pollutants, chemistry, aerosols, and surface energy balances. These measurements support studies of Arctic climate change attribution (why things are changing), not just trends (how things are changing). IASOA is responsive to growing evidence that the earth system may be approaching environmentally critical thresholds within decadal time scales. The information from IASOA will not only enhance scientific understanding but will also support decisions by the global community regarding climate change mitigation and adaptation strategies. Main gaps: Not all observatories are members of established global networks such as GAW and BSRN. It is recommended that IASOA observatories that are not members of these global networks be evaluated for potential membership and that roadblocks to membership be investigated. Other types of measurement gaps include, but are not limited to: (1) Radar-lidar pairs at each observatory to assess cloud properties; (2) Flux towers at each observatory for methane and CO2 fluxes; (3) Aerosol measurements at each observatory; and (4) Surface and upper air ozone measurements at each observatory. Network type: Predominantly atmospheric measurements.

Atmosphere Climate
14. Observations of ice conditions of the Arctic Ocean and Arctic seas

Monitoring of ice conditions: providing of collection, analysis, archiving and presentation of information obtained from different information sources The continuous monitoring system is based on information from two main groups. The first one is immediate direct observation of the state of ice cover. The information sources are Roshydromet’s permanent polar stations, automatic weather stations and buoys, satellite images in different wave ranges through international hydrometeorological information exchange channels under the auspices of WMO (ETSI) and Ice Services of different countries. Occasional observations by marine expeditions and “North Pole” drifting stations also belong of this group of observation. These are so-called initial or raw data to be further processed, accumulated and archived. As a rule, this information is interesting only to specialists and is not presented without special processing. The second one is processed and summarized information, i.e. diagnostic, analytical and prognostic information. Diagnostic information is a result of processing of initial or raw information. These are adapted and geographically bound satellite images, ice maps, diagnosis of the current state in the form of descriptions and different bulletins. Analytical information is a consolidation of heterogeneous initial and diagnostic information on the ice cover state in the form of overviews and bulletins for different periods of time and different components of ice conditions. Prognostic information is a forecast of different lead times for different phenomena and characteristics of ice conditions. Actually ESIMO AARI web-portal presents a series of group 2 information products having the best informativity and ready for the direct use by customers.

Sea ice
15. Changes of North-Western Spitsbergen Cryosphere (CryoChange)

Project aims indicate of changes of main terrestrial cryosphere components – glaciers and permafrost. Research on glaciers assumes both to inspect recent changes (mass balance, geometry, thermal structure and widely understood dynamics) and to reconstruct past events (especially in base on subaqual records in the marine-part forefields of the tide-water glaciers). Selected research results are part of the World Glacier Monitoring Service (WGMS). The most widely studied are Waldemar Glacier, Irene Glacier and Elise Glacier. Several research aspects, such as geometry of glaciers are investigated for more than 30 years, since first NCU Polar Expedition in 1975. Permafrost investigations are focused on the depth of the summer active layer thawing and thermal properties of it. Selected results constitutes a part of Circumpolar Active Layer Monitoring (CALM) programme.

16. Northern Contaminants Program (NCP) (NCP)

The Northern Contaminants Program aims to reduce and where possible eliminate long-range contaminants from the Arctic Environment while providing Northerners with the information they need to make informed dietary choices, particularly concerning traditional/country food. To achieve these objectives the NCP conducts research and monitoring related to contaminants in the Arctic environment and people. Monitoring efforts focus on regular (annual) assessment of contaminant levels in a range of media, including air, biota and humans. Environmental research is conducted into the pathways, processes and effects of contaminants on Arctic ecosystems while human health research focuses on assessing contaminant exposure, toxicity research, epidemiological (cohort) studies, and risk-benefit assessment and communications. Main gaps: Contaminant measurements in Arctic seawater, toxicity data specific to Arctic species. Network type: - Thematical observations: Contaminants levels and relevant ancilliary parameters - Field stations: Atmospheric observing stations at Alert, Nunavut and Little Fox Lake, Yukon. - Community based observations: Numerous communities throughout the Canadian Arctic participate in sample collection - Coordination: National coordination of the program provided by the NCP secretariat, which also acts as liaison with AMAP.

Atmosphere Ecosystems Human health Oceanography
17. GeoBasis - ZERO

The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes CO2-flux, snowcover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and –sediment. GeoBasis also supports the ClimateBasis programme with service and datahandling during the field season.

Geophysics Climate change Ice Arctic Permafrost Ecosystems
18. Monitoring of small catchment areas

Runoff, precipitation, snow water equivalent and frost depth are measured from catchment areas of 0.07-122 km² in area. Water quality, suspended solids and nutrient load is also monitored in part of the areas. The aim is to produce long-term data series for research with special focus on the effects of land on runoff and water quality. Project is managed by Finnish Environmental Institute (SYKE).

water quality Catchment studies catchment Environmental management Ice suspended solids nutrient load. runoff
19. Monitoring of North-Europe snow cover with optic satellite images

Project intends to produce remote sensing information of sea ice and snow cover in Northern Europe. It is joined international project between ESA, GMES, Polarview and Finnish Environmental Institute. FEM uses the satellite images to follow the snow and ice melt in spring months (march-June) in Finland.

gmes snow cover esa satellite Ice Arctic monitoring polarview. Temporal trends
20. Ecogeochemical mapping of the eastern Barents Region (Barents Ecogeochemistry)

Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.

Geology PCBs Soils Catchment studies Mapping Heavy metals Radioactivity PAHs Long-range transport Acidification Pollution sources Contaminant transport Mining Radionuclides Arctic Local pollution GIS Geochemistry Dioxins/furans Data management Sediments