The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 3 of 3
1. Ozone and UV monitoring in Greenland

Denmark has obligations according to the agreements in the Montreal Protocol, ie. for the monitoring of the ozone layer. This project is a fullfilment of these obligations, and the work is being supported by the Danish Environment Protection Agency (Danish EPA) through a DANCEA funding. Recommandations for the monitoring are updated every 3rd year via the Ozone Research Managers (ORM) Meeting at WMO in Geneva. The most recent meeting was in 2017. The monitoring program was initiated in 2002. The current partnership consists of Latmos (FR), NASA (US) and DMI (DK). Monitoring of the ozone layer and measurement of the UV radiation currently takes place in 2 locations in Greenland: Kangerlussuaq and Ittoqqortoormiit. In Kangerlussuaq the instrumentation consists of a Brewer spectrometer capable of measuring the ozone column and doing UVB scans, a SAOZ spectrometer measuring ozone and NO2, and an Aeronet Sun Photometer (hosted for NASA). In Ittoqqortoormiit the instrumentation consists of an ozone balloon borne sounding station, a SAOZ spectrometer (hosted for Latmos), a GUV 2511 broadband instrument and an Aeronet Sun Photometer (hosted for NASA). Retrieved data is uploaded to international databases (WOUDC, NDACC & NILU). Retrieved data is used to correct satellite measurements and to monitor the state of the ozone layer.

ozone ozonesonde polar stratospheric clouds UV radiation
2. Determination of stratospheric aerosols by balloon borne sensors

Stratospheric aerosols like Polar Stratospheric Clouds (PSCs) or volcanic aerosols are investigated by different types of balloon borne sensors in co-operation with the University of Nagoya, Japan, and the University of Wisconsin, Laramie, Wisconsin. The sensors flown are dedicated optilca particle counters (OPC) or backscatter sondes (BKS), respectively.

aerosols Atmospheric processes Ozone polar stratospheric clouds Geophysics Climate variability Climate Climate change balloon sonde optical particle counter Arctic PSCs Atmosphere
3. Stratospheric observations with LIDAR technique (NDSC)

The stratospheric multi wavelength LIDAR instrument, which is part of the NDSC contribution of the Koldewey-Station, consists of two lasers, a XeCl-Excimer laser for UV-wavelengths and a Nd:YAG-laser for near IR- and visible wavelengths, two telescopes (of 60 cm and 150 cm diameter) and a detection system with eight channels. Ozone profiles are obtained by the DIAL method using the wavelengths at 308 and 353 nm. Aerosol data is recorded at three wavelengths (353 nm, 532 nm, 1064 nm) with depolarization measurements at 532 nm. In addition the vibrational N2-Raman scattered light at 608 nm is recorded. As lidar measurements require clear skies and a low background light level, the observations are concentrated on the winter months from November through March. The most prominent feature is the regular observation of Polar Stratospheric Clouds (PSCs). PSCs are known to be a necessary prerequisite for the strong polar ozone loss, which is observed in the Arctic (and above Spitsbergen). The PSC data set accumulated during the last years allows the characterization of the various types of PSCs and how they form and develop. The 353 and 532 nm channels are also used for temperature retrievals in the altitude range above the aerosol layer up to 50 km.

Aerosols Atmospheric processes Ozone Polar Stratospheric Clouds UV radiation Geophysics Climate variability stratosphere Climate Climate change Aerosol Arctic PSCs Atmosphere LIDAR UV