The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 2 of 2

Aerosols, Clouds, and Trace gases Research InfraStructure - ACTRIS  is a research infrastructure on the ESFRI roadmap from March 2016. ACTRIS is currently supported by the European Commission Horizon 2020 Research and Innovation Framework Programme (H2020-INFRAIA-2014-2015) from 1 May 2015 to 30 April 2019.


The objectives of ACTRIS Research Infrastructure

Detecting changes and trends in atmospheric composition and understanding their impact on the stratosphere and upper troposphere is necessary for establishing the scientific links and feedbacks between climate change and atmospheric composition.

  • The primary objective of ACTRIS is to provide the 4D-variability of clouds and of the physical, optical and chemical properties of short-lived atmospheric species, from the surface throughout the troposphere to the stratosphere, with the required level of precision, coherence and integration.
  • The second objective is to provide effective access to this information and the means to more efficiently use the complex and multi-scale ACTRIS parameters serving a vast community of users working on models, satellite retrievals, and analysis and forecast systems.
  • The third objective is to raise the level of technology used in the RI and the quality of services offered to the community of users, involving partners from the private sector.
  • Finally, the fourth objective of ACTRIS is to promote training of operators and users and enhance the linkage between research, education and innovation in the field of atmospheric science.
Aerosol air pollution Arctic Arctic haze Atmosphere Atmospheric processes Climate Climate change infrastructure Long-range transport network observations database trace gases trends
2. Permafrost in the Usa Basin: distribution, characterisation, dynamics and effects on infrastructure

- To support the further development of a geocryological database for the Usa Basin (East-European Russian Arctic), including key characteristics of permafrost such as distribution, coverage, temperature, active layer, etc. - To create GIS-based permafrost maps at the scale of 1:1,000,000 for the entire Usa Basin and at 1:100,000 for selected key sites. - To reconstruct the history of permafrost dynamics at key sites in the region over the last thousands of years using palaeoecological analysis and radiocarbon dating of peat deposits, and over the last few decades using remote sensing imagery and/or monitoring (base case scenario). - To predict permafrost dynamics at key sites in the region under future conditions of climate change (20-100 yrs), using a 1-dimensional permafrost model (future global change scenario). - To assess the effects of permafrost dynamics under base case and global change scenarios on urban, industrial and transportation infrastructure in the Usa Basin. Research activities Based on several representative sites, late Holocene permafrost dynamics will be characterized using palaeoecological techniques. Variability in permafrost conditions over the last few decades will be studied based on the available data from long-term monitoring station records and from a time series of remote sensing images (optional). Mathematical modelling of permafrost dynamics will be carried out for at least two sites and a forecast of permafrost degradation in the area under anticipated climate warming will be developed. The likely effects of permafrost degradation upon regional infrastructure (inhabited localities, heat and power engineering, coal and ore mines, oil and gas extracting complex, pipelines and railways) will be analyzed using a GIS approach. GIS data layers on permafrost dynamics and infrastructure will be compared in order to delimitate high risk areas based on existing infrastructure and anticipated permafrost degradation. Hereafter, the created GIS may serve as a basis for more detailed forecasting of permafrost dynamics under both natural and anthropogenic climate changes in lowland and alpine areas of the East-European Russian Arctic.

geocryology Geology palaeoecology Soils Catchment studies Mapping Geophysics Climate variability Climate Spatial trends Environmental management Climate change Modelling Ice GIS Permafrost Oil and Gas Temporal trends permafrost dynamics infrastructure