Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 3 of 3
1. GeoBasis Disko 2017-2018

The GeoBasis Disko monitoring program started in 2017 as a part of the cross disciplinary Greenland Environmental Monitoring (GEM) program. GeoBasis Disko is an integrated part of the GeoBasis program, following the same standards as in Nuuk and Zackenberg (two other GEM sites) and largely focusing on the same parameters and methodologies. GeoBasis Disko is finaced by Danish Ministry of Energy, Utilities and Climate.

A close collaboration and synergy with Arctic Station that is manned year round makes it possible to collect and carry out measurements also during winter.As location Qeqertarsuaq on the south coast of the Disko island, represent a Greenlandic west coast climate, with annual mean temperatures just below 0°C, with discontinuous permafrost, and as such remarkably different from the two existing GEM sites. Further, the Disko bay area is highly interesting from a socioeconomic perspective due its high population and active fishery industry, and as one of the most popular tourist destinations in Greenland.

The primary objective of GeoBasis Disko is to establish baseline knowledge on the dynamics of fundamental abiotic terrestrial parameters within the environment/ecosystem around Arctic Station. This is done through a long term collection of data that includes the following sub-topics;

  • Snow properties; including spatial and temporal variation in snow cover, depth and density.
  • Soil properties; spatially distributed monitoring of key soil parameters such as temperature, moisture, and concentration of nutrient ions
  • Meteorology; monitoring of essential meteorological variables across various surface types and elevations.
  • Gas Flux monitoring; plot and landscape scale flux monitoring of CO2, H2O and energy in wet and dry ecosystems.
  • Hydrology; monitoring of seasonal variation in river water discharge, chemistry and suspended sediment.
  • Geomorphology; monitoring of shorelines, coastal cliff foots and cross-shore profiles.

GeoBasis focuses on selected abiotic parameters in order to describe the state of Arctic terrestrial environments and their potential feedback effects in a changing climate. As such, inter-annual variation and long-term trends are of paramount importance.

 

 

Active layer Arctic CO2 gas exchange Digital camera Energy Balance freshwater geomorphology Hydrology Monitoring riverine transport Sea ice snow cover Soil water suspended solids terrestrial ecosystem
2. Mechanisms of fluvial transport and sediment supply to Arctic river channels with various hydrological regimes (SW Spitsbergen) (ARCTFLUX)

Fluvial transport, its dynamics and structure, constitute a good indicator of the condition of the natural environment in various climatic zones. Analysis of fluvial transport components allows for precise determination of the rate and directions of transformations of geosystems of any importance. In the polar zone, very sensitive to global changes, it seems expedient to identify the mechanisms and structure of fluvial transport, particularly in the conditions of the observed glacier retreat, the main alimentation source of proglacial rivers. Studies carried out in the zone revealed difficulties in determination of fluvial transport structure, particularly the actual bedload of gravel-bed rivers based on direct measurements, resulting from: short measurement series, lack of standardization of research methods and measurement equipment, and strategy of selection of study objects and sampling. The research project presented concerns determination of mechanisms of fluvial transport and sediment supply to Arctic gravel-bed river channels. The mechanisms reflect the processes of adaptation of proglacial rivers of the Arctic zone to changing environmental conditions, and indicate the dominant directions of transformations of paraglacial geosystems of various importance. For studies on Arctic geosystems, the region of the south Bellsund (SW Spitsbergen) was selected due to extensive knowledge on its hydro-meteorological and glacial-geomorphological conditions, and long-term measurement series carried out by the research station of the MCSU, among others within the framework of the international monitoring network: SEDIBUD (IAG) and Small-CATCHMENT program. For detailed studies, rivers with various hydrological regimes were selected, functioning at the forefield of the Scott and Renard Glaciers. The Scott River glacial catchment and glacier-free catchments of the Reindeer Stream and the Wydrzyca Stream (with a snow-permafrost hydrological regime) meet the selection criteria for representative test catchments analyzed for the following programs: SEDIFLUX, SEDIBUD, and POP.

conductivity cryosphere deposition Discharges distribution erosion freshwater freshwater flux geomorphology GIS Glaciers GPS ice thickness lidar Mapping mass balance remote-sensing riverine transport rivers runoff sediment balance surface water Water currents Water flux
3. Sweden National Lake Survey

The National Lake Survey (Table 4, #7.4) gives an aerial coverage of water quality in Swedish lakes. Water samples are taken at 0.5 to 2 m depth in a total of 1841 lakes in northern Sweden in a 6-year rotation with about 350 lakes per year. The samples are taken after the lake’s complete overturn in the autumn. For water chemistry the samples are analyzed for 20 variables (temperature, pH, NH4, NO2+NO3, Tot-N, Tot-P, PO4, TOC, Si, absorbance, Fe, Mn, alkalinity, Ca, Mg, K, Na, SO4, Cl and F) and less frequently for 9 trace metals (Cu, Cd, Pb, Cr, Ni, Co, Ni, V, Al). In the Trend Lakes program the sampling is more frequent (4 times per year for water chemistry and one time per year for bottom fauna, phytoplankton and macrophytes). The aim of the program is to build time series to detect environmental changes due to e.g. Climate change or large scale changes in deposition load. In this program about 40 lakes are sampled in northern Sweden. For water chemistry the samples are analyzed for the same elements as in the National Lake Survey. In addition test fishing is conducted in 2 of the lakes per year. Invented variables: Temperature, pH, NH4, NO2-NO3, Tot-N, Tot-P, PO4, TOC, Si, Absorbance, Fe, Mn, Alkalinity, Ca, Mg, K, Na, SO4, Cl, F, and trace metals Cu, Cd, Pb, Cr, Ni, Co, Ni, V, Al Sampling depths: Sampling at 0.5 - 2.0 m depth during fall circulation Network layout: The network is based on EMEP-squares and gives between 19 and 134 lakes sampled per county every year. Sampled lakes rotation: About 350 lakes are sampled in northern Sweden every year in a six-year -periodical program. Out of 4824 lakes sampled in the country 2112 are situated in northern Sweden.

freshwater