The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 3 of 3

Aerosols, Clouds, and Trace gases Research InfraStructure - ACTRIS  is a research infrastructure on the ESFRI roadmap from March 2016. ACTRIS is currently supported by the European Commission Horizon 2020 Research and Innovation Framework Programme (H2020-INFRAIA-2014-2015) from 1 May 2015 to 30 April 2019.


The objectives of ACTRIS Research Infrastructure

Detecting changes and trends in atmospheric composition and understanding their impact on the stratosphere and upper troposphere is necessary for establishing the scientific links and feedbacks between climate change and atmospheric composition.

  • The primary objective of ACTRIS is to provide the 4D-variability of clouds and of the physical, optical and chemical properties of short-lived atmospheric species, from the surface throughout the troposphere to the stratosphere, with the required level of precision, coherence and integration.
  • The second objective is to provide effective access to this information and the means to more efficiently use the complex and multi-scale ACTRIS parameters serving a vast community of users working on models, satellite retrievals, and analysis and forecast systems.
  • The third objective is to raise the level of technology used in the RI and the quality of services offered to the community of users, involving partners from the private sector.
  • Finally, the fourth objective of ACTRIS is to promote training of operators and users and enhance the linkage between research, education and innovation in the field of atmospheric science.
Aerosol air pollution Arctic Arctic haze Atmosphere Atmospheric processes Climate Climate change infrastructure Long-range transport network observations database trace gases trends
2. Monitoring of the effects of air pollution and climatic change on lakes

Monitoring of the water quality reflecting long-range transboundary air pollution including acidifying compounds, metals and POPs, and climatic change. Part of the sites are also including in biological monitoring. Monitoring sites are the most upland lakes and they are not under any significant human impact. Information is distributed to the UN Convention on Long-range Transboundary Air Pollution. Monitoring is managed by Finnish Environmental Institute (SYKE).

Biology air pollution Heavy metals Climate Acidification climate change Ecosystems POPs
3. Pollutants in air, daily values

National Environmental Monitoring in Sweden. The project is included in a European Monitoring and Evaluation Programme network (EMEP). The subprogram main task is to check if international agreements as UN Convention on Long range Trans-boundary Air Pollution (CLTRAP) is followed. The measurements follow up the Swedish national generational goals "Natural Acidification Only", "A Non-Toxic Environment" and "Clean Air". The network comprises 10 stations, out of which three are in north Sweden, the two one are in AMAP area. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2. Precipitation quality is monitored following measured compounds: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Metals in air and precipitation are analysed only at one north station (Bredkälen), and include: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, methyl-Hg.

Ozone Air Pollution Mapping Heavy metals Long-range transport Acidification Spatial trends Contaminant transport Modelling Arctic Dioxins/furans Data management Precipitation Atmosphere EMEP Temporal trends Eutrophication