The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 2 of 2
1. Metabolic and hormonal correlates of reproductive effort in the kittiwake

A co-operative project between France and Norway is proposed to study the physiological mechanisms (hormones and metabolic rate) involved in the regulation of parental effort (brood size) in an Arctic-breeding seabird, the kittiwake Rissa tridactyla. This project will be carried out at Kongsfjorden (Ny Ålesund, Svalbard) which constitutes one the northernmost (79° N) breeding site of the species. The main goal of this project is to understand the reasons of the very poor productivity of the species in this high-arctic area (only one chick/pair/year compared to 2-3 chicks/ pair/year in more temperate areas). To do so, we will concurrently study the metabolic cost of chick rearing and the metabolic cost of foraging. To test whether parent kittiwakes are apparently unable to rear more than one chick, we will manipulate brood size and will measure its consequences on basal metabolic rate (BMR) and foraging activity. We will experimentally manipulate the brood size by swapping chicks between nests shortly after hatching. Parent birds of the different experimental groups will be captured, weighted and a small blood sample (500 µL) will be taken for thyroid hormones. BMR will be estimated through thyroïd hormones (Chastel et al. 2003, J. Avian Biol. 34: 298-306), a method that reduces handling time imposed by the use of a respirometer, whereas activity at sea will be estimated using miniature activity recorders (Daunt et al., 2002 Mar. Ecol. Prog. Ser.245 : 239-247, Tremblay et al. 2003, J. Exp. Biol. 206: 1929-1940). Nests of the different groups (12 nests with 2 chicks and 12 nest with 1 chick) will be observed during 2 weeks after what parent birds will be recaptured, and bled again for T3 assay. On an other group of birds (N=10), we will calibrate these miniature activity recorders (N=10, weight:5 g) by observing the activities (rest, brooding, flying, etc..) of the instrumented birds in the colony. Food samples (N=12) will be collected from parent birds during capture and recapture sessions (kittiwakes spontaneously regurgitate food when handled). Breeding adults and chicks will be maked with plastic rings that allow identification from a distance.

parental effort Hormones Arctic Seabirds Metabolism Reproduction
2. Persistent organic pollutants in marine organisms in the marginal ice zone near Svalbard: Bioconcentration and biomagnification

Due to the high organochlorine concentrations reported in Arctic top predators, and the potential transport of contaminants with the drifting sea-ice in the Arctic, organisms constituting lower trophic levels living in association with sea-ice have been proposed as susceptible of uptake of high loads of organic pollutants. The present project studies the organochlorine occurrence in organisms living in the marginal ice zone north of Svalbard and in the Fram Strait. This includes both ice fauna (ice-amphipods), zooplankton, polar cod and different seabird species foraging in the marginal ice zone. Our objectives are to investigate: *The bioaccumulation of organochlorines in ice-associated amphipods in relation to diet preference, spatial variation due to sea ice drift route, size, sampling year, uptake and distribution within the body. *Comparison of organochlorine contamination in pelagic and ice-associated organisms at the similar trophic position, to investigate the effect of sea ice as a transporter and concentrator of pollutants. *Spatial variation in zooplankton species, related to differences in water masses and exposure to first year or multi year sea ice. *The contamination load in different seabirds feeding in the marginal ice zone, in relation to diet choice and estimated trophic position, taxonomically closeness and the induction of hepatic CYP P450 enzymes.

habitats Biology sea ice drift route Organochlorines PCBs Fish Long-range transport Spatial trends Sea ice Contaminant transport Ice trophic positions Arctic Persistent organic pollutants (POPs) Seabirds Food webs metabolism Pesticides ice-associated organisms Diet zooplankton