The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 11 of 11
1. Atmospheric mercury at Ny-Ålesund, Svalbard

To see whether the features in the annual cycle of mercury is a local phenomena for Alert in the Canadian Arctic or also apply to larger ares in the Arctic. To quantify the concentrations/depositions of biological available mercury (reactive gaseous mercury and particulate mercury) in the Arctic environment during polar sunrise

Atmospheric processes Mercury Heavy metals Arctic Atmosphere
2. Global Emission Inventory for Hg

Our knowledge of mercury fluxes on a global scale is still incomplete. Estimates indicate that Europe and North America contribute less than about 25 % to the global anthropogenic emissions of the element to the atmosphere. The majority of the remaining emissions originate from combustion of fossil fuels, particularly in the Asian countries including China, India, and South and North Korea. Even less and very controversial information is available on emissions of mercury from natural sources, including volatilization of the element from terrestrial and aquatic surfaces. In general, it is assumed that natural emissions of the element are about 3000 t/year, thus contributing more 60 % to the total global emissions of mercury. However, much work needs to be done in order to verify the above estimate.

anthropogenic sources Sources mercury Emissions Arctic
3. Temporal trends of persistent organic pollutants and metals in Landlocked char

The objectives of this study are to determine temporal trends of persistent organic pollutants (POPs) and metals, especially mercury, in landlocked Arctic char in Char Lake and Resolute Lake by analysis of annual sample collections, to investigate factors influencing contaminant levels in landlocked char such as the influence of sampling time, water temperature and diet, and to provide this information on a timely basis to the community of Qausuittuq (Resolute). The rationale is that small lakes in the high arctic are replenished annually with snowmelt runoff and direct precipitation which represent significant fractions of their water budgets. Declining concentrations of POPs, or increasing levels of previously unstudied POPs, in air and precipitation should be reflected relatively quickly in changes in levels in food webs and top predator fishes, compared to the vast marine environment. We know this to be the case from the sedimentary record of POPs and mercury in small arctic lakes. This project collects landlocked arctic char from lakes near Resolute annually and analyses them for mercury, a suite of other metals as well as persistent organic pollutants (PCBs, organochlorine pesticides including toxaphene). Results will be compared over time. The first samples were collected from Char and Resolute Lakes in 1992/93. The next set were collected in 1997 and annually since then. Char are being collected from several lakes in the area because of limited sample numbers in some lakes and the possibility of local influences. Samples are also being archived for future analyses.

Organochlorines PCBs landlocked arctic char mercury Heavy metals Persistent organic pollutants (POPs) Temporal trends
4. Spatial trends and pathways of POPs and metals in fish, shellfish and marine mammals of northern Labrador and Nunavik

The objectives of this study were to develop baseline data on persistent organic pollutants (POPs) and metals, in freshwater and anadromous fish, shellfish, and marine mammals, important to Inuit communities of Northern Labrador and Nunavik in order to provide the same level of information that is available for other Canadian arctic regions. 1999-00 was the final year of the project. Successful collection of mussels (Mytilus edulis), arctic char (sea run), scallops and walrus samples were made in 1999. During 1998 major collections of ringed seal, sea run arctic char and blube mussels (Mytilus edulis) were made. Chemical analyses of POPs and metals in ringed seals and char collected in 1998-99 were completed in 1999-2000. Low concentrations of mercury, selenium and lead were found in samples of scallops from Labrador while cadmium and arsenic levels were much higher than the other elements, especially in gut samples. Arsenic was the most prominent of the five metals determined in mussels from Nunavik. Mercury levels were low (0.02-0.03 ug/g wet wt) in char from Labrador collected in 1999 similar to our previous observations in Labrador and Nunavik. Much higher levels of mercury and selenium were found in landlocked char (at Kangiqsujuaq) and than in all sea run char from widely separated sites Nunavik and Labrador. Mercury and selenium levels in seal liver did not differ among the 5 locations after adjustment for age of the animals. Percent organic mercury levels increased with age in seal muscle from about 80% in animals from 0-2 yrs to about 100% in adult animals. Mercury levels in walrus meat (muscle) were relatively low compared with liver and kidney. Levels of tributyl tin in char muscle ranged from <0.01 to 0.85 ng/g wet wt and highest levels were found in samples from Kangirsuk (Ungava Bay region). PCBs and other organochlorines were present at very low levels in mussels and arctic char from locations in Nunavik and Labrador. In general, levels of PCBs and SDDT in ringed seal blubber in this study were similar to levels found in ringed seal blubber at other eastern Arctic locations.

mercury Spatial trends arctic char ringed seals
5. Temporal trends of persistent organic pollutants and metals in ringed seals from the Canadian Arctic

The objective of this project is to study long term temporal trends of persistent organic pollutants and mercury in ringed seals from the Canadian arctic. The project rationale is that there are previous results for POPs and mercury in ringed seal tissues for many locations. Furthermore there may be regional differences in temporal trends due to geographical differences in POPs and mercury in marine waters and food webs within the Canadian arctic. It is relatively cost efficient to return to the same locations for additional samples using the same sampling and anlaysis protocols are were used in previous studies (see AMAP and Canadian Assessment Reports). Samples are being collected with the help of hunters and trappers organizations in each community. During 2000-01 samples are being collected at Resolute, Arctic Bay and Pond Inlet. The study will also analyse samples collected recently (1998/99) from Pangnirtung, Arviat and Grise Fiord. Results will be compared with previous data which the Principal Investigator generated in the 1980's and early 1990's. Preliminary results will be available in mid-2001.

Organochlorines PCBs mercury Persistent organic pollutants (POPs) Temporal trends ringed seals Marine mammals
6. Effects of prenatal exposure to OCs and mercury on the immune system of Inuit infants (year 3)

This study investigates possible detrimental effects on the immune system of Inuit infants which may be induced by prenatal and postnatal (breast feeding) exposure to persistent environmental contaminants such as organochlorine compounds. These substances accumulate in the body of Inuit women in part due to their consumption of sea mammal fat and can be transferred to the foetus during pregnacy and to the infant during breast feeding. Immune system function will be evaluated using several parameters: 1) the level of antibody produced by the infant following Haemophilus influenza immunization; 2) the level of proteins which protect the infant against bacterial infections (complement system) before its immune system is fully developed; and 3) the level of chemical messengers (cytokines) which enable the various cells of the immune system to communicate with each other, thereby maintaining its proper function and assuring the protection of the infant against bacteria, parasitic and viral infections.

Organochlorines Inuit infants mercury vitamin A prenatal exposure assessment Human health
7. An investigation of factors affecting high mercury concentrations in predatory fish in the Mackenzie River Basin.

1. Continue to investigate spatial and temporal patterns in mercury concentrations in fish in lakes in the Mackenzie River Basin with a focus on predatory fish in smaller lakes near Fort Simpson but also including Great Bear Lake 2. Assess temporal trends in mercury concentrations and influencing factors, e.g., climate change 3. Conduct sediment core studies as opportunities allow to characterize long-term trends in mercury deposition and productivity 4. Integrate the findings of this study with our mercury trend monitoring in Great Slave Lake and the western provinces.

Pathways Sources Biology Organochlorines Mackenzie River Basin Soils Catchment studies Mercury Heavy metals Fish Indigenous people Pollution sources Environmental management Contaminant transport Food webs Sediments Atmosphere Human health Ecosystems
8. Mercury Measurements at Amderma, Russia

This project aims to establish continuous Total Gaseous Mercury (TGM) measurements at Amderma, Russia to provide circumpolar data in concert with international sampling efforts at Alert (Nunavut, Canada), Point Barrow (Alaska, USA) and Ny-Ålesund (Svalbard/Spitsbergen, Norway). The objectives of this project are to determine spatial and temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic in order to assist in the development of long-term strategies for this priority pollutant by: A) measuring ambient air TGM concentrations in the Russian Arctic; B) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; and C) studying the circumpolar behaviour of mercury by comparison with data from other polar sites.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
9. Mercury Measurements at Alert

The objectives of the project are: A) to determine temporal trends in atmospheric mercury concentrations and deposition processes of mercury in the Arctic, and to assist in the development of long-term strategies for this priority pollutant by: i) measuring ambient air Total Gaseous Mercury (TGM) concentrations in the Canadian Arctic (Alert) and investigating the linkage to elevated levels of mercury known to be present in the Arctic food chain; ii) investigating and establishing the causes of temporal variability (seasonal, annual) in mercury concentrations so that realistic representations (models) of atmospheric pathways and processes can be formulated, tested and validated; iii) studying the chemical and physical aspects of atmospheric mercury vapour transformation (oxidation) after polar sunrise and the resultant enhanced mercury deposition to the sea, snow and ice surfaces each year during springtime; and iv) obtaining a long-term time series of atmospheric mercury (TGM) concentrations at Alert for the purpose of establishing whether mercury in the troposphere of the northern hemisphere is (still) increasing and if so, at what rate; B) to establish a sound scientific basis for addressing existing gaps of knowledge of the behaviour of mercury in the Arctic environment that will enable international regulatory actions to reflect the appropriate environmental protection strategies and pollution controls for the Arctic by: i) studying the relative roles of anthropogenic and natural sources of mercury so as to clarify understanding of the atmospheric pathways leading to the availability of mercury to Arctic biota; ii) studying tropospheric TGM depletion mechanisms/processes leading to enhanced input of mercury to the Arctic biosphere in spring; iii) undertaking essential speciated measurements of particulate-phase and/or reactive gaseous-phase mercury as well as mercury in precipitation (snow/rain) to quantify wet and dry deposition fluxes into the Arctic environment; and vi) providing the scientific basis for the information and advice used in the preparation and development of Canadian international strategies and negotiating positions for appropriate international control objectives.

Pathways Atmospheric processes gas-phase mercury mercury Heavy metals Long-range transport Spatial trends Hg Arctic Atmosphere Temporal trends particulate-phase mercury Arctic springtime depletion of mercury total gaseous mercury
10. Fluxes of Mercury from the Arctic Ice Surface during Polar Sunrise Conditions and Melt Conditions

The objectives of this project are: A) to determine the pathway for the transfer of mercury in snowmelt to sea water during the melt period at Alert; B) to determine the extent of open water and wet ice in the summer Arctic as it affects the surface exchange of Hg using satellite radar imagery; and C) to determine the atmospheric dynamics associated with the photochemistry of mercury episodically during the polar sunrise period.

trace metals satellite radar imagery radar Atmospheric processes melt open water acoustic sounding mercury Mapping Heavy metals Long-range transport Spatial trends Contaminant transport Hg Modelling Ice Arctic GIS radar imagery wet ice Atmosphere atmospheric boundary layer boundary layer
11. Spatial trends in loadings and historical inputs of mercury inferred from Arctic lake sediment cores

1. To determine the depth profiles of mercury (Hg) and lead (Pb) as well as manganese (Mn) and iron (Fe) in fifteen dated Arctic sediment cores over a three year period. Mercury is the main focus. 2. To quantify geographical trends in fluxes of the mercury and its enrichment factors in Nunavut, NWT, Nunavik, and Labrador. To link mercury findings with those of paleolimnological indicators, POPs, as well as indicators of biogeochemical processes of manganese and iron, all of which are obtained from the same cores, or cores from the same sites whenever possible. 3. To complement existing data on mercury in Arctic sediment cores with data generated over a much wider latitudinal and longitudinal range than previous work in order to provide a better understanding of Hg in Canada North. 4. Secondary to Hg, to provide loading data for Pb which may help elucidate the understanding of Hg pathways and sources.

Pathways Sources Metals pollution Canadian Arctic Mercury Heavy metals Spatial trends Arctic Sediments Remote lakes