The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 20 of 25 Next
1. Veðurstofa Ísland ‐ Icelandic Meteorological Office, IMO (IMO)

The main purpose of IMO is to contribute towards increased security and efficiency in society by: • Monitoring, analyzing, interpreting, informing, giving advice and counsel, providing warnings and forecasts and where possible, predicting natural processes and natural hazards; • issuing public and aviation alerts about impending natural hazards, such as volcanic ash, extreme weather, avalanching, landslides and flooding; • conducting research on the physics of air, land and sea, specifically in the fields of hydrology, glaciology, climatology, seismology and volcanology; • maintaining high quality service and efficiency in providing information in the interest of economy, of security affairs, of sustainable usage of natural resources and with regard to other needs of the public; • ensuring the accumulation and preservation of data and knowledge regarding the long-term development of natural processes such as climate, glacier changes, crustal movements and other environmental matters that fall under IMO‘s responsibility. IMO has a long-term advisory role with the Icelandic Civil Defense and issues public alerts about impending natural hazards. The institute participates in international weather and aviation alert systems, such as London Volcanic Ash Advisory Centre (VAAC), the Icelandic Aviation Oceanic Area Control Center (OAC Reykjavík) and the European alarm system for extreme weather, Meteoalarm. Network type: Thematic observations in 6 different fields

Geology Geophysics Pollution sources Sea ice Oceanography Atmosphere Ecosystems
2. Íslenskar Orkurannsóknir ‐ Iceland Geosurvey, ÍSOR (ÍSOR)

Iceland GeoSurvey ÍSOR is a self‐financing, state‐owned, non‐profit institution in the field of natural sciences, it’s main activity being related to the geothermal industry in Iceland and abroad. It was established 2003, when the GeoScience Division of Orkustofnun (the National Energy Authority of Iceland), was spun off as a separate entity according to the law of Iceland GeoSurvey no. 86, March 26th 2003 ( The main role of ÍSOR is to work on projects and research in the field of natural resources and energy, as the directive board of the institute decides. ÍSOR offers research consulting services worldwide on most aspects of geothermal exploration, development, and utilization, and provide training and education on related issues. It is based on six decades of continuous experience in the field of geothermal and hydropower research and development. The focus is on geothermal exploration, development, and utilization, but cover also many other geoscience‐related fields as well, including groundwater studies, marine geology, and environmental monitoring. Main gaps: Not specified Network type: Field stations Thematic observations

Geology Soils Geophysics Environmental management
3. Ecogeochemical mapping of the eastern Barents Region (Barents Ecogeochemistry)

Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.

Geology PCBs Soils Catchment studies Mapping Heavy metals Radioactivity PAHs Long-range transport Acidification Pollution sources Contaminant transport Mining Radionuclides Arctic Local pollution GIS Geochemistry Dioxins/furans Data management Sediments
4. National Institute of Geophysics and Volcanology (INGV)

INGV operates in the Arctic region with observational activities in Svalbard, near the area of Ny-Ålesund, where the Institute has installed three stations to monitor ionospheric scintillation, currently in operation. In Svalbard, the PEGASO (Polar Explorer for Geomagnetic And other Scientific Observations) project has performed several stratospheric balloon launches (Pathfinders) with the aim of studying the Earth's magnetic field in an area with poor coverage measurements and of studying the possible trajectories of circumpolar winds at high altitudes. At the Greenland Base of Thule, INGV in collaboration with CNR, DMI (Danish Meteorological Institute), University of Rome La Sapienza and ENEA, carries out spectrometric observations for the analysis of stratospheric chemistry and mesosphere to monitor the ozone layer. In cooperation with In addition, an upper atmosphere permanent observatory for magnetosphere and Ionosphere sounding, including Auroras, and other geophysical processes is operated in Greenland, Zackemberg station in cooperation with Danish scientists. INGV is currently involved in the coordination of two European initiatives: a) EMSO (European Multidisciplinary seafloor Observatory) a European research infrastructure of ESFRI (European Strategy Forum on Research Infrastructures), which counts to establish a multi-parametric permanent network in the surrounding European seas, including the Arctic area. The project began in April 2008 with the participation of 11 European countries; b) EUROANDRILL, created under the aegis of the European Science Foundation, aims to drill key areas of polar areas to study past and future climate. The project involves the involvement of 10 European and 3 extra-European countries. The Institute is also active in other projects in the Arctic, in particular actively participates in the seismic network GLISN, developed from the existing stations in and around Greenland.

Geology Oceanography Atmosphere
5. Spain general summary

Our objective in present SAON meeting was to know more about SAON activities and plannings to coordinate and promote guidelines criteria for observations in the ARctic Present Spain Research in Arctic is performed mainly for universities and scientific institutions , down the responsability of the Science Department with the support of several national institutions including the Defense Department and Foreign Affairs Institutions are coordinated by the National Polar Committee. The National Scientific Program finance the activities in the polar zones Although our main scientific activities are in Antarctica the activity of Spain in Arctic is rapidly increasing following the fact that Arctic research is a priority task in our Science Program At present we have detected 16 scientific groups working activelly in the differnts fields of Arctic topics (glaciology, meteorology, permafrost, high atmosphere, ecology, physical oceanography, marine geology and biology) These activities are mainly performed in cooperation with Arctic countries Institutions via institutional or researchers contacts About our media to work in Arctic ocean Spain has at present two multiporposes oceanographic research ships In the last years our Ocanographic ship Hesperides has developed two campaigns in The area of Greenland and Svalvars Island in the fields of marine Geology , marine biology and physical oceanography For next summer Hesperides will perform a third oceanographic campaign close to the Atlantic coast of Greenland Other national institutions have been working in marine biology campaigns including fisheries stock evolution Spain has a National Centre of Polar Data were all researchers must enter their raw data gathered in the polar campaigns We considerer , at present , our interest to cooperate inside SAON board, considering that besides other possible cooperation to SAON tasks could be a cooperation with our Polar Data Centre

Geology Oceanography Atmosphere Ecosystems
6. Sodankylä-Pallas super site of the Finnish Meteorological Institute (FMI) (Sodankylä-Pallas)

Atmosphere monitoring, cryosphere monitoring, atmosphere-biosphere interaction. In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments Network type: In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments

Geology Atmosphere Ecosystems
7. Umhverfisstofnun ‐ The Environment Agency of Iceland (Umhverfisstofnun)

The Environment Agency operates under the direction of the Ministry for the Environment. It's role is to promote the protection as well as sustainable use of Iceland’s natural resources, as well as public welfare by helping to ensure a healthy environment, and safe consumer goods. Areas of operation: 1. Information and advice for the public, businesses and regulatory authorities 2. Monitoring of environmental quality 3. Evaluation of environmental impact assessment and development plans 4. Operation supervision, inspection, operating permits, etc. 5. Assessment of conservation effects and registration of unique nature 6. Management and supervision of designated protected areas 7. Wildlife management and conservation 8. Eco‐labeling 9. Labeling and handling of toxic as well as other hazardous substances 10. Coordination of health and safety in public places 11. Coordination of local environmental and health inspectorates 12. Genetically modified organisms (GMO) Main gaps: Metadata archives and metadata availability Network type: ‐ Thematic observations ‐ Community based observations ‐ Coordination

Geology Oceanography Atmosphere Ecosystems
8. Geographical environment conditions and its changes in the polar and subpolar regions (GeograPOLARUMCSphical environment conditions and its changes in the polar and subpolar regions ())

The study includes comprehensive study of the geographical environment in the area of Polar Station of Maria Curie-Skłodowska University in Calypsobyen (NW part of Wedel Jarlsberg Land, Svalbard). Currently, studies have been carried out within research projects: - Dynamics of matter circulation in the polar catchment are a subject to deglaciation processes (Scottelva, Spitsbergen) (DYNACAT) - Morphogenetic and morphodynamics conditions of development of the coast of the NW part of Wedel Jarlsberg Land (Spitsbergen) in the late Vistulian and Holocene (MORCOAST) - Mechanisms of fluvial transport and sediment supply to Arctic river channels with various hydrological regimes (SW Spitsbergen) (ARCTFLUX)

Geology Soils Environmental management
9. Geological Survey of Denmark and Greenland (GEUS) (GEUS)

Not specified

Geology geomorphology Geophysics Greenland
10. National Survey of Forest Soils and Vegetation

The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.

Pathways Biological effects Geology Soils vegetation Mapping Heavy metals Long-range transport Acidification forest Spatial trends Environmental management Contaminant transport Forest damage Modelling Biodiversity GIS Geochemistry Data management Temporal trends Ecosystems
11. Ice caves in order to reconstruct Holocene glacier recessions

The objective of the project was the investigation of englacial melt water channels of Svalbard glaciers in order to find in situ organic material within glacier caves. Specified organic material found beneath glaciers was meant for radiocarbon dating and creation of reliable geochronologies of glacier recessions with considerable smaller glacier termini than present on Svalbard. First radiocarbon dating results ever from organic material found under a glacier’s bottom of glacier Longyearbreen will be published this year. The different moss species ranging from Tomentypnum nitens, Sanionia uncinata, Distichium spp., Syntrichia ruralis gave ages between 1900 and 1100 cal yr BP (Humlum et al., 2004).

Glaciers Geology Climate variability Ice caves Radionuclides Ice

The aim is a better understanding of the impact of contemporary climatic change (posterior to Little Ice Age) on plant dynamics and the morphodynamic processes active at the glacial margins in polar environments. The selected research field is constituted of the Brøgger Peninsula, where erosion assessments will be evaluated for various processes (frost weathering, runoff, biological weathering, …).

Geology Hydrography Climate change Arctic GIS geomorphology
13. Radiometric studies of natural surfaces at Ny-Aalesund by means of field survey and multispectral satellite data

The main goal of this research project is to complete the collection of snow/ice field data and to improve the organization of snow/ice spectral signatures, and structural data, along with ancillary information in the existing archive.

Geology Mapping radiometric studies remote-sensing Spatial trends Climate change Ice Arctic Temporal trends spectral reflectance
14. Minch Habitat Mapping

To survey and characterise the occurrence of biogenic reefs of cold-water corals in the Minch: • Conduct side scan sonar survey of ridge feature east of Mingulay. • Ground-truth the sonar results with targeted camera / ROV deployments. • Repeat this survey at other locations to examine how widespread this habitat may be in the Minch. • Sample live coral and rubble zones with minimally invasive video-directed grab sampling. • Report on findings and present summary data in a GIS compatible format (ArcView).

Geology Hydrography Mapping Spatial trends GIS Sediments
15. Arctic Coastal Dynamics

Part of the international project Arctic Costal Dynamics (ACD) were Department of Physical Geography, University of Oslo participates. The working group consists of Trond Eiken (UoO), Bjørn Wangensteen (UoO) and Rune Ødegård (Gjøvik University College). The aim of this part of the ACD-project is to quantify coastal cliff erosion by the use of terrestrial photogrammetry.

Geology Long trend coastal cliff erosion monitoring Arctic GIS Permafrost Temporal trends
16. Late Holocene and Shallow Marine Environments of Europe (HOLSMEER)

1. To generate high-resolution quantitative palaeoceanographic/palaeoclimatic data from NE Atlantic coastal/shelf sites for the last 2000 years using a multidisciplinary approach 2. To develop novel palaeoclimatic tools for shallow marine settings by (i) calibrating the proxy data against instrumental datasets, (ii) contributing to transfer function development, and (iii) then to extrapolate back beyond the timescale of the instrumental data using the palaeoclimate record 3. To investigate the link between late Holocene climate variability detected in the shelf/coastal regions of western Europe and the variability of the oceanic heat flux associated with the North Atlantic thermohaline circulation, and to compare such variability with existing high-resolution terrestrial proxies to help determine forcing mechanisms behind such climate change 4. To lay a foundation for the identification of hazards and resources linked with, or forced by, such climate change.

Geology Climate variability Spatial trends Environmental management Climate change palaeoceanographic/palaeoclimatic Modelling anthropogenic Geochemistry Sediments Temporal trends
17. Causes for GPR reflections in an alluvial permafrost environment

3-D GPR (ground penetrating radar) profiling of permafrost deposits and examination of their geocryologic and sediment properties for verification of GPR profiles. The scientific project has the following aims: To improve the understanding of how GPR (ground penetrating radar) reflections are generated in frozen ground; to reveal the main factors (geophysical and sedimentary) controlling electromagnetic reflection characteristics and their spatial continuity as examplarily studied along a continuous permafrost section, i.e. to distinguish between physical (dielectricity, conductivity and density) and sedimentary (ice/water content, grain size distribution, content of organic matter, texture) properties and estimate their proportionate quantity on the origin of the wave reflections.

ground penetrating radar Geology Geophysics Arctic Sediments Permafrost
18. Heat and mass transfer in the active layer

The active layer, the annually freezing and thawing upper ground in permafrost areas, is of pivotal importance. The moisture and heat transfer characteristics of this layer also determine the boundary layer interactions of the underlying permafrost and the atmosphere and are therefore important parameters input for geothermal or climate modeling. Finally, changes in the characteristics of the permafrost and permafrost related processes may be used as indicators of global ecological change provided the system permafrost-active layer-atmosphere is understood sufficiently well. The dynamics of permafrost soils is measured with high accuracy and high temporal resolution at our two sites close to Ny-Ålesund, Svalbard. Using these continuous data we quantify energy balance components and deduce heat transfer processes such as conductive heat flux, generation of heat from phase transitions, and migration of water vapor.

Water flux Geology Soils Geophysics Spatial trends Modelling Arctic Permafrost Temporal trends Energy flux
19. Seismological "Very Broad Band" Station (VBB-Station)

The new seismological broad band station KBS at Ny-Ålesund replaces a former WWSSN station operated by the Institute for Solid Earth Physics of the University of Bergen. Both instrumentation and data acquisition of the old station were inadequate to meet all the demands for highest data quality for today's modern seismological research. The high technical standard of the new stations instrumentation now fulfils all the requirements of a modern broad band station. Therefore this station is integrated into the international Global Seismological Network, GSN, for monitoring the world-wide seismic activity. Special interests focus on regional seismicity at and around Svalbard itself and along the ridges in the arctic ocean. KBS is an open station, e.g., any interested scientist or international organization os allowed to retrieve data of special interest. Data are routinely processed and stored at the IRIS Data Management Center in Seattle. Copies are also available at the Geoforschungszentrum Potsdam (GFZ).

Geology Seismology Geophysics Arctic
20. Holocene of Nova Scotia and New Brunswick, Canada

Study of the Holocene development in the coastal area of Nova Scotia and New Brunswick (Canada), in relation to sea-level movements, isostatic movements and climate development, particularly for the last 4500 years. Use of stratigraphical and sedimentological methods and of 14C-dating.

Geology Climate variability isostatic adjustment stratigraphy Climate change sea-level change Holocene Sediments