The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 20 of 25 Next
1. DiskoBasis -Ecosystem monitoring at Arctic Station

In 2013 a new ecosystem monitoring programme “DiskoBasis” was initiated at Arctic Station on Disko Island, Greenland. The project is partly funded by the Danish Energy Agency. The primary objective of DiskoBasis is to establish baseline knowledge on the dynamics of fundamental physical parameters within the environment/ecosystem around Arctic Station. This initiative extends and complements the existing monitoring carried out at Arctic Station by including several new activities –especially within the terrestrial and hydrological/fluvial field. DiskoBasis include collection of data in the following sub-topics; • Gas flux, meteorology and energy balance • Snow, ice and permafrost • Soil and soil water chemistry • Vegetation phenology • Hydrology -River water discharge and chemistry • Limnology -Lake water chemistry • Marine -Sea water chemistry

Arctic Catchment studies Climate Climate change Climate variability CO2-flux measurements Discharges Ecosystems Geochemistry Geophysics Hydrography Ice Limnology Permafrost Sea ice Soils
2. Ecogeochemical mapping of the eastern Barents Region (Barents Ecogeochemistry)

Geochemical mapping project based on multimaterial and -elemental method covering the NW Russia and adjacent areas of Finland and Norway. NW-Russia is of strategic importance not only for Europe but also for the sosio-economic development of the whole Russia for its richness in natural resources. Their use must be based on environmentally acceptable principles. In addition, within the area exist numerous industrial centres whose environmental impacts are unknown. The information produced by the project is significant for the future development of the area and remedial measures of the environment. The project lead by the applicant, will be carried out in 1999-2003 in cooperation with Russian and Norwegian partners.

Geology PCBs Soils Catchment studies Mapping Heavy metals Radioactivity PAHs Long-range transport Acidification Pollution sources Contaminant transport Mining Radionuclides Arctic Local pollution GIS Geochemistry Dioxins/furans Data management Sediments
3. Ground water and soil monitoring

Monitoring of groundwater quality (geochemistry)

Heavy metals Acidification Geochemistry
4. Throughfall Monitoring Network in Sweden

The purpose is to quantify deposition (mainly of sulphur and nitrogen), and to illustrate effects in the soil, for example possible acidification. The aim of the network is to describe the current situation, regional differences, trends over time, and the effects of acid deposition. The atmospheric deposition of sulphur and nitrogen are the main causes of current acidification of ecosystems. Acidification results in substantial pH reduction in soil, groundwater, lakes and water courses. Deposition is investigated as precipitation studies in open field areas (bulk precipitation) and by throughfall studies in nearby forest stands. For sulphur and chloride, throughfall monitoring is useful for determination of total deposition. In areas, or during periods with low sulphur deposition, internal circulation in vegetation might influence results from throughfall measurements significantly. For nitrogen and base cations (mainly potassium and manganese) canopy interaction is important. Air concentrations of sulphur and nitrogen dioxide, ammonia, and ozone are measured at some locations. The observations made are: (i) air chemistry (SO2, NO2, NH3, O3); (ii) soil water chemistry (pH, Alk, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn, Fe, ooAl, oAl, Al-tot, total organic carbon); (iii) deposition in open field (precipitation, H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn); (iv) deposition in forest (throughfall, H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn). For nitrogen and base cations (mainly potassium and manganese) canopy interaction is important. Soil solution chemistry in the forest stands is used as indicator of soil conditions.

NO3 Cl throughfall alkalinity Acidification Na NH4 Contaminant transport pH Mg Dioxins/furans Ca K Atmospheric processes acidity SO4 Heavy metals Long-range transport Spatial trends condictivity Local pollution Geochemistry Data management precipitation Temporal trends eutrophication
5. National Survey of Forest Soils and Vegetation

The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.

Pathways Biological effects Geology Soils vegetation Mapping Heavy metals Long-range transport Acidification forest Spatial trends Environmental management Contaminant transport Forest damage Modelling Biodiversity GIS Geochemistry Data management Temporal trends Ecosystems
6. From Soil to Ocean: Transfer of terrigenous organic carbon from permafrost soils to the Arctic Ocean

In order to estimate the effect of rising global temperatures on organic carbon (OC) stocks in the temperature-sensitivity Arctic environment, our project aims at investigating the transfer of terrestrial OC from permafrost soils to the Arctic Ocean. Detailed compositional analyses of bulk soil and sediments along a transport trajectory combined with compound-specific isotopic (13C and 14C) analysis of selected lipid biomarkers will be used to study alteration processes of organic matter occurring in the soil and its during transport. Sub-goals include to a) identify suitable biomarkers for soil organic carbon in permafrost soils, b) determine residence times of selected biomarkers in permafrost soils, fluvial and marine sediments, and c) quantify carbon transfer from source (soil) to sink (marine sediment) and its timescale.

Pathways Soils Climate change Geochemistry Permafrost Radiocarbon dating
7. ZERO-database

The ZERO database contains all validated data from the Zackenberg Ecological Research Operations Basic Programmes (ClimateBasis, GeoBasis, BioBasis and MarinBasis). The purpose of the project is to run and update the database with new validated data after each succesfull field season. Data will be available for the public through the Zackenberg homepage linking to the NERI database. The yearly update is dependent on that each Basis programme delivers validated data in the proscribed format.

Biological effects Hydrography Geophysics Climate Polar bear GIS Sediments Marine mammals Biology Populations Soils UV radiation Fish Discharges Sea ice Climate change Terrestrial mammals Ice Biodiversity River ice Arctic Seabirds Geochemistry Reproduction Permafrost Ecosystems
8. Digestibility of Ice Algae and Phytoplankton: The Potential Impacts of Changing Food Supply to the Arctic Benthos

Sea ice is a dominant feature of marine ecosystems in the Arctic. Its presence directly or indirectly impacts Arctic marine ecosystems, especially on the shelves where benthic and pelagic systems are extensively coupled. If the extent and thickness of sea ice continue to decline, we predict a shift in the type of algal material reaching the benthos (from ice algae to phytoplankton), which will potentially impact the food requirements of the benthos. We have several pieces of evidence showing that both types of ice algae (below-ice ice algae dominated by Melosira arctica and within-ice ice algae dominated by Nitzchia frigida) presently reach the benthos in significant quantities. What we don’t know, and what we propose to address is: “What is the digestibility of ice algae and phytoplankton-derived organic matter by the Arctic macrobenthos?” From the perspective of a macrofaunal organism, digestibility includes three separate components: 1) selection (is encountered organic material ingested or rejected?); 2) absorption (is ingested organic material absorbed during passage through the gut, or does it get egested in the feces?); and 3) assimilation (is absorbed organic material assimilated into biomass?). We propose a series of hypotheses to guide our assessment of digestibility: H1: There is no difference in the quality of ice algae and phytoplankton as food for benthic organisms. H1i: There is no difference in the long-term assimilation of ice algae and phytoplankton by benthic organisms of different trophic groups (suspension feeders, deposit feeders, omnivores). H1ii: There is no difference in the short-term absorption efficiency among different trophic groups feeding on phytoplankton and ice algae. H2: The response of benthic organisms to ice algae and phytoplankton as food sources is the same when assessed on a Pan-Arctic scale. Assessment of long-term assimilation of the various types of algae (within-ice ice algae; below-ice ice algae; and phytoplankton) will be conducted by determining lipid biomarkers and their isotopic ratios, and by determining CHN and protein signatures of organisms collected during all aspects of the work (summer ’02; spring ’03; fall ’03; and summer ’04 in both Norway and Kotzebue, Alaska). Assessment of short-term absorption will first use the ash-ratio method in a whole core delivery experiment. Following the whole-core experiments, dominant taxa from each trophic group will be identified and used in a comparison of 1) absorption efficiencies as calculated by the ash-ratio method, and 2) carbon retention efficiencies as calculated using a pulse-chase radiotracer approach. Finally, we will repeat the dominant taxa absorption efficiency experiments in both Svalbard, Norway at the Ny Ålesund lab and in Kotzebue Sound, Alaska.

Biology Sea ice Geochemistry Food webs Sediments
9. Measurement and Modeling the Mercury Depletion Events in the Arctic at the Ny-Ålesund Site

One of the major benefits of performing measurements at Ny-Ålesund is the availability of a monitoring station on Mount Zeppelin, 474m asl. Given the typical height of the Arctic inversion layer during the envisaged measurement period, it will be possible to continuously monitor mercury and particulate in the free troposphere at the same time as performing ground level monitoring. The simultaneous measurements above and below the boundary layer should provide evidence for the mode of elemental Hg replenishment, whether it is from due to exchange with the free troposphere, or transport occurring at sea level. The proposed collaboration, by collecting data from two strategically placed Arctic stations, in the paths of different air masses and data from above the Arctic inversion layer would provide the most comprehensive set of Arctic mercury measurements performed to date.

Pathways Atmospheric processes Mercury depletion Emissions Geochemistry Data management Atmosphere Ecosystems
10. The regulation of iron and manganese reduction in marine sediment

To be completed.

Biology Geochemistry
11. Phosphorus Cycling in the Cryosphere

This project will construct detailed phosphorus budgets for polar catchments occupied by glaciers and freshwater systems undergoing rapid response to climate warming. These are Midre Lovenbreen, Svalbard; Jebsen Creek, Signy Island (maritime Antarctic) and Storglaciaren, northern Sweden. The relationship between meltwater production, pathway and phosphorus liberation from glacial sediments will be examined closely. Emphasis will be given to phosphorus sorption dynamics in turbid glacial streams and their receiving waters (fjords and lakes).

Glaciers Catchment studies Phosphorus Climate change Arctic Geochemistry Ecosystems
12. Measurements of atmospheric mercury species during Arctic springtime

The major goal of the process study between April 15 and May 15, 2003 is to obtain quantified information on reaction path-ways, products and net deposition of mercury during Arctic sunrise.

Heavy metals mercury deposition Contaminant transport Emissions Arctic Geochemistry Atmosphere
13. Studies of periglacial and glacial structures and permafrost conditions in ice free areas around Ny Ålesund area

Project Description: - Landform mapping of the periglacial and glacial structures using remote sensing / aerial photography and field observation - Genetic studies of ground ice using geochemical and stable isotope techniques - Studies of microbial life in extreme periglacial environment

glacial structures Mapping Geophysics microbial life Geochemistry Data management aerial photography periglacial structures Permafrost
14. Benthic processes in the Arabian Sea: mechanistic relationships between benthos, sediment biogeochemistry and organic matter cycling

1. To quantify benthic community parameters for all size classes of fauna across the Oxygen Minimum Zone (OMZ) 2. To make a detailed assessment across the OMZ of a) sediment accumulation, mixing and irrigation rates and depths and b) environmental factors acting as controls on faunal activity 3. To characterise solid phase and porewater geochemistry of sediments across the OMZ 4. To assess a) faunal digestive Organic Matter (OM) alteration, b) the relative importance of chemo- and photosynthetic food sources, and c) benthic food web structure, across the OMZ 5. To determine porewater profiles and benthic solute fluxes in situ, and to assess faunal OM assimilation and trophic relationships by monitoring tracers during shipboard and in situ incubations 6. To obtain high resolution porewater profiles of oxygen and other key analytes, free of pressure and other effects potentially introduced by core recovery 7. To determine in situ oxygen consumption rates and benthic fluxes 8. To use labelled tracers to assess mixing and irrigation rates, faunal OM assimilation, and size-selective ingestion and mixing 9.To determine sediment denitrification and sulfate reduction rates and their contributions to OM remineralisation

Biological effects Oceanography Geochemistry Sediments
15. Late Holocene and Shallow Marine Environments of Europe (HOLSMEER)

1. To generate high-resolution quantitative palaeoceanographic/palaeoclimatic data from NE Atlantic coastal/shelf sites for the last 2000 years using a multidisciplinary approach 2. To develop novel palaeoclimatic tools for shallow marine settings by (i) calibrating the proxy data against instrumental datasets, (ii) contributing to transfer function development, and (iii) then to extrapolate back beyond the timescale of the instrumental data using the palaeoclimate record 3. To investigate the link between late Holocene climate variability detected in the shelf/coastal regions of western Europe and the variability of the oceanic heat flux associated with the North Atlantic thermohaline circulation, and to compare such variability with existing high-resolution terrestrial proxies to help determine forcing mechanisms behind such climate change 4. To lay a foundation for the identification of hazards and resources linked with, or forced by, such climate change.

Geology Climate variability Spatial trends Environmental management Climate change palaeoceanographic/palaeoclimatic Modelling anthropogenic Geochemistry Sediments Temporal trends
16. Molecularly impregnated polymer based sensors for environmental and process monitoring

The project aims to develop Molecular Imprinted Polymer (MIP)sensors into practical tools for the monitoring of a number of pollutants listed in the EU Water Framework Directive. (Further details in commercial confidence)

Heavy metals Discharges Spatial trends Pollution sources Environmental management Contaminant transport Local pollution Geochemistry Temporal trends
17. Biological responses to CO2-related changes in seawater carbonate chemistry during a bloom of Emiliania huxleyi

Large-scale changes in surface ocean chemical equilibira and elemental cycling have occurred in the fremework of "global change" and are expected to continue and intensify in the future. The progressive increase in atmospheric CO2 affects the marinebiospehere in varous ways: indeirectly, for instance, through rising mean global temperatures causing incereased surface ocean stratification and hence mixed layer insulation, and directly through changes in seawater carbonate chemistry. In lab experimetns we recently observed that CO2-related changes in seawater carbonate chemistry strongly affect calcification of marine coccolithophorids. A rise in atmospheric CO2 may slow down biogenic calcification in the surface ocean with likeley effects on the vertical transport of calcium carbonate to the deep sea. The lab findings will be tested with natural phytoplankton in semi-controlled conditions in a series of floating mesocosms.

Biological effects Climate change Geochemistry
18. Production, fate and effects of new DOM in a coastal ecosystem

Four-week mesocosm study with the following objectives: - to identify environmental and biotic factors in control of the production, chemistry and fate of exportable DOM in a coastal environment - to follow how DIN and DIP are transformed to DON and DOP and to measure their mineralisation - to analyse the optical properties of new DOM and to measure how radiation might change the optical properties - to validate current community-nutrient models for the marine system with particular emphasis on the mechanisms regulating shifts between carbon- and mineral nutrient limitation of bacterial growth rates, - to produce experimental data for further development and modification of the plankton community-nutrient model and – to incorporate DON and DOP into the present community-nutrient model.

Biology Modelling Geochemistry Food webs Ecosystems
19. Paleeoecology and (periglacial) eolian sediment transfer in the ice-sheet marginal zone of southwestern Greenland (Kangerlussuaq region)

The project aims at reconstructing the environmental history in the interior Kangerlussuaq region since deglaciation. Focus is placed on the lacustrine and eolian sediments to decipher climate evolution in terms of temperature, evaporation- precipitation balance and phases of high- wind speed events. The overall objectives are to build a high-resolution (decadal-to-century scale) chronostratigraphic framework for past climate variability from the analysis of organic-rich lake sediments and peat filled basins using a variety of sediment analysis techniques (magnetostratigraphy, grainsize, sedimentfractionation techniques, AMS 14C dating, diatom-, pollen- and macrofossil analysis) and sedimentology. Research activities diatom analysis, pollen analysis, magnetic susceptibility, automated correlation techniques, grainsize, organic chemistry, sediment fractionation techniques, AMS radiocarbon dating, sedimentology, mapping, sediment transport and erosion measurements/monitoring, micro-meteorology, vegetation mapping, pollen rain studies, diatom salinity training sets, limnology

Glaciers Geology eolian Climate variability Climate sedimentology Climate change Quaternary geology Ice sheets Geochemistry Sediments paleeoecology geomorphology periglacial paleolimnology
20. Tundra

Overall objective is to obtain net fluxes for carbon and freshwater water from an Arctic catchment under base-case and global change scenarios. Objective of the Vrije Universiteit Amsterdam is to study the temporal and patial variability in floodplain sediment balance over the last 2000 years. Research activities: Selected areas in the Usa basin will be studied in detail, both in the zones of continuous and discontiunous permafrost. Fieldwork was and will be conducted in the summers of 1998 and 1999. At selected field sites, the present day processes of river erosion and deposition will be evaluated and the natural evolution and variation of amount and rate of erosion and deposition will be determined for the last 2000 years.

Pathways erosion sediment balance Soils Hydrography Catchment studies carbon flux Climate variability freshwater flux Discharges Spatial trends Climate change Geochemistry Sediments Temporal trends