Projects/Activities

The full list of projects contains the entire database hosted on this portal, across the available directories. The projects and activities (across all directories/catalogs) are also available by country of origin, by geographical region, or by directory.

Displaying: 1 - 20 of 290 Next
1. Organic substances in biota

National Environmental Monitoring in Sweden. The monitoring of persistent organic pollutants (POPs) in fish is performed in 110 lakes in Sweden and annual sampling is carried out in 32 lakes, of which 7 are located in or close to the AMAP area. Three fish species have been selected: Arctic char (Salvelinus alpinus), Northern pike (Esox lucius), and Perch (Perca fluviatilis). Fish are sampled, prepared, and stored in the Environmental Specimen Bank (ESB) at the Swedish Museum of Natural History (NRM). PCB, HCH, HCB, DDT, DDE, PFAS and PBDE are some of the POPs that are analysed.

Arctic Arctic char Biology Contaminant transport Dioxins/furans Esox lucius Fish Long-range transport Mapping Northern pike Organochlorines PCBs Perch Persistent organic pollutants (POPs) Pesticides Salvelinus alpinus Spatial trends Temporal trends
2. Metals in biota

National Environmental Monitoring in Sweden. Monitoring of heavy metals in fish is performed in 110 trend lakes in Sweden. Annual sampling is carried out in 32 lakes, of which seven are in AMAP area. Three fish species have been selected: Arctic char (Salvelinus alpinus), Northern pike (Esox lucius), and Perch (Perca fluviatilis). A selection of metals is analysed in prepared samples of muscle and liver tissue. Analysed metals in liver are : Al, Ag, As, Bi, Cd, Cr, Cu, Ni, Pb, Sn and Zn. In muscle samples Hg and stabile isotopes δ 15N, δ 13C are analysed.

Arctic Biological effects Contaminant transport contamination Data management Discharges Fish lakes Local pollution Mapping Spatial trends Temporal trends trace elements vertebrate
3. National Survey of Forest Soils and Vegetation

 

This project has been divided into two new projects: The Swedish Forest Soil Inventory and the Swedish National Forest Inventory.

The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.

acidification Biodiversity Biological effects Contaminant transport Data management Ecosystems Environmental management forest Forest damage Geochemistry Geology GIS Long-range transport Mapping Modelling Pathways Soils Spatial trends Temporal trends vegetation
4. Lakes; Chemistry

Annual measurements of physical, chemical, and biological variables are taken in small to medium sized, mostly minimally disturbed lakes, situated across the country. Of the 108 lakes that are part of the Trend Station Lake monitoring programme, 20 are situated in AMAP area. The main aim of the monitoring programme is to document long-term changes related to global or regional change and human-generated stressors. To complement the Trend Station Lake monitoring programme, national lake surveys provide spatial data needed to determine regional patterns, and coupled with time-series data, changes in surface water quality. The National Lake Survey (the Surveillance Stations, re-sampled stations) programme for lake water quality, started in 2007 and results in data of all Swedish lake conditions. Each year some 800 new lakes are sampled to determine chemical and physical conditions; lakes are resampled at 6 year intevals. 4824 lakes are sampled in the country during a six-year sampling cycle, with 1270 situated in AMAP area. The variables included in the Trend Station Lake monitoring programme include water chemistry, fish, phytoplankton, macrophytes, zooplankton, and benthic invertebrates, whilst the National Lake Survey is focused solely on chemical and physical parameters.

Absorban acidification Al algae Arctic As Benthos Biological effects Ca Cd conductivity Contaminant transport Cr Cu Data management Discharges Environmental management Epiphyton Eutrophication Fe Fish Food webs Hydrography K Local pollution Long-range transport Mapping Mg Mn N NH4 Ni NO2-NO2 Nutrients Pb pH phytoplankton Sediments Si Spatial trends Temperature Temporal trends TOC Total nitrogen Total phosphor V Zn zooplankton Turbidity Benthic fauna Chlorophyll Secchi depth Litoral zone Sublitoral zone Profundal zone Pelagic zone
5. INTERACTIONS

Important progress has been made in recent decades to describe and understand how arctic terrestrial vertebrate interact, especially concerning predator-prey interactions. Indirect interactions between different prey species modulated by shared predators (e.g. Arctic fox) are believed to have important impacts on the structure and/or dynamics of some communities. Yet, our understanding of these types of interactions is still fragmentary. To fill that gap, we will build on ongoing projects exploring related questions in Canada (Marie-Andrée Giroux, Nicolas Lecomte, Joël Bêty) and Greenland (Olivier Gilg, Niels M. Schmidt), while taking advantage of existing networks (ADSN in North America and “Interactions” program in Greenland and Eurasia). The aim of the project is to promote the implementation of several common protocols that will (1) improve each collaborator’s knowledge at the site level and, more importantly, that will (2) be merged across sites and years to improve our understanding of the functioning and the influence of indirect interactions on arctic vertebrate communities in general.

Five types of data have been identified (by the 5 initiators of the project already mentioned above) as being mandatories to answer questions related to this topic. These data sets will be collected using 5 specific protocols described in the following chapters:

  1. Monitor predation pressure using artificial nests
  2. Monitor real predation pressure on Calidris nests using Tiny Tags
  3. Observations of predators and lemmings (3b: fox scats DNA barcoding)
  4. Assessing lemming (or “rodent”) relative abundance using different methods
  5. Assessing “herbivores” (excl. rodents) relative abundance using “faeces transects”
Arctic Biodiversity Biological effects Biology Climate change Diet Ecosystems Environmental management Food webs Modelling Populations Reproduction Spatial trends Temporal trends Terrestrial mammals
6. FUVIRC-Finnish Ultraviolet International Research Centre

FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.

Arctic Atmosphere Biodiversity Biological effects Biology Climate change Ecosystems Forest damage Geophysics Human health ozone Populations Reindeer Temporal trends UV radiation
7. LAPBIAT-Lapland Atmosphere-Biosphere facility

The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.

Arctic Atmosphere Atmospheric processes Biodiversity Biological effects Biology Climate Climate change Climate variability Data management Ecosystems Emissions Environmental management Exposure Geophysics Human health Local pollution Long-range transport Modelling ozone Persistent organic pollutants (POPs) Populations Reindeer Spatial trends Temporal trends UV radiation
8. BioBasis - Zackenberg

The purpose of the BioBasis programme is to monitor basic qualitative and quantitative elements of biodiversity in the terrestrial ecosystems at Zackenberg in Northeast Greenland. The programme provides data on typical High Arctic species and processes that can be expected to react on year to year variation in climate as well as long-term climate change. It includes 30 variables of terrestrial and limnic plant, arthropod, bird and mammal dynamics in the Zackenberg valley.

Biological effects Biology Fish Terrestrial mammals Modelling Ice Biodiversity Arctic Food webs Ecosystems
9. Netherlands Arctic Station University of Groningen

This station is one of many international stations in Ny-Aalesund, Svalbard. Traditionally research has focussed on the ecology of barnacle geese. The research now includes monitoring of plant production, vegetation change, insect phenology, arctic terns, snowbuntings, barnacle geese, reindeer and arctic foxes. Regular guests are Dutch institutions for marine research like IMARES and NIOZ and researchers from NIOO and VU.

The main objective is to study adaptations to climate warming and understanding dynamics of animal and plant populations.

grazing ornithology
10. Population Biology and Monitoring of Dunlin

Studying the population biology and monitoring the population status of Dunlin. The population under study ilives in a coatal tundra area in Northern Norway.

Biodiversity Biological effects Biology Climate variability Terrestrial Birds
11. The Arctic Station, Qeqertarsuaq, Greenland, University of Copenhagen (AS-Q)

The Arctic Station is located on the south coast of the Disko Island in central west Greenland. It is thus facing the Disko Bay and is characterized by an arctic, marine climate. There are 3 building comprising guest facilities, staff accomodation, laboratory and library that are located in a nature sanctuary, approximately 1 km west of a small town, Qeqertarsuaq (formerly Godhavn), with ca. 1100 inhabitants. Within the town community is located all necessary service facilities, incl. several shops, bank, postoffice, church and a hospital. The station offers a 'state of the art' platform for year-round environmental research. The Arctic Station maintains a stat-of-the-art automatic weather station located in the immediate vicinity of the Arctic Station. The datalogging at Arctic Station (every half hour) comprises: air temperatur, humidity, incoming and outgoing radiation, wind speed and direction, rainfall, ground temperatures (5, 60 and 150 cm below surface) and temperature in solid rock 2 metre below surface. In addition to the above the station also maintains a freshwater, a marine and a terrestrial monitoring program. The whole moitoring program is call DiskoBasic.

Active layer algal blooming aquatic monitoring Snow and ice properties
12. Monitoring of fish and seafood

Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.

137Cs 99Tc and 210Po Environmental management Fish Human health Radioactivity Radionuclides shellfish
13. Collaboration Network on EuroArctic Environmental Radiation Protection and Research (CEEPRA)

The aim of the CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) project is establishment of a cooperation network in the EuroArctic region, cross-border exchange of knowledge and skills, improvement of emergency preparedness capabilities and risk assessments in case of nuclear accidents in the region as well as raising awareness and knowledge in the general public and stakeholders with respect to the nature, common challenges and associated risks in the area of nuclear safety, emergency preparedness and radioactivity in the environment. The project will study the current state of radioactive contamination in terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from the Finnish Lapland, Finnmark and Troms in Norway, the Kola Peninsula and the Barents Sea. The results will provide updated information on the present levels, occurrence and fate of radioactive substances in the Arctic environments and food chains. Special attention will be given to collection and analyses of natural products widely used by population in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments will be carried out through modelling and investigation of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region’s indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. Open seminars for general public and target groups will be arranged in Finland, Russia and Norway during the project implementation period to provide relevant information on radioactivity-related issues and the status in the region.

Environmental safety terrestrial ecosystem Radioactivity Contaminant transport hypothetical assessments Radionuclides levels public awareness marine ecosystem fate of radionuclides in food chains modeling
14. Seabird Monitoring

The main objective is to monitor the breeding seabird populations (primarily Uria lomvia, Somateria molissima and Rissa tridactyla).

Ecosystems
15. Monitoring of natural products in Finnish Lapland

The project monitors the artificial radioactivities in natural products in Finnish Lapland. The work mainly started after Chernobyl accident.

Fish Radioactivity Radionuclides Arctic Local pollution Reindeer Food webs
16. Arctic and Alpine Stream Ecosystem Research

The project, Arctic and Alpine Stream Ecosystem Research (AASER), started within EU’s Climate & Environment Programme and now continues with national funding, primarily Norway, Italy and Austria. The objective is to study dynamics and processes in rivers systems in Arctic and Alpine regions. Emphasis is given to the relationships between benthic invertebrates and environmental variables, especially in glacier-fed systems and in relation to climate change scenarios. On Svalbard research is concentrated around Ny Ålesund, particularly Bayelva and Londonelva. In 2004 the focus will be on the use to stable isotopes to detect transfer processes within and between ecosystems.

Glaciers Biology Catchment studies Spatial trends Climate change Biodiversity Arctic Food webs Temporal trends Ecosystems
17. Spatial and long-term trends in organic contaminants and metals in fish species important to the commercial, sports, and domestic fisheries of Great Slave Lake and the Slave River ecosystem.

i. Determine mercury, metals and persistent organic contaminant pollutants (POPs) concentrations in lake trout harvested from two locations (West Basin near Hay River, East Arm at Lutsel K’e) and burbot harvested from one location (West Basin at Fort Resolution) in 2015 to further extend the long-term (1993-2013 (POPs) and 1993-2014 (mercury)) database. ii. Determine POPs trends in lake trout and burbot using our 1993-2014 data base. iii. Continue our investigations of mercury trends in predatory fish to include lakes in the Deh Cho, Great Bear Lake, and other lakes as opportunities arise. iv. Participate in and contribute information to AMAP expert work groups for trend monitoring for POPs and mercury. v. Integrate our mercury trend assessments with studies we are conducting in the western provinces as part of Canada’s Clear Air Regularly Agenda for its Mercury Science Assessment. vi. Work with communities in capacity building and training.

Slave River biomagnification Catchment studies Pollution sources Contaminant transport Dioxins/furans Pesticides Human intake Pathways Biology Organochlorines Mackenzie River Basin PCBs Heavy metals Fish Indigenous people Long-range transport Spatial trends Environmental management Climate change Emissions Persistent organic pollutants (POPs) Food webs Atmosphere Temporal trends Ecosystems Great Slave Lake
18. Monitoring of contaminants in atmosphere and biota in Greenland

The aim of the present project is to continue the monitoring of contaminants in air and biota in Greenland in order to detect temporal and geographical changes. Furthermore, temporal trend monitoring of selected biomarkers (e.g. bone mineral density and histopathological changes) in the polar bear populations will be initiated as these have shown to be sensitive to stressors such as contaminants. The project will provide the fundamental basic knowledge of temporal trends and feed into international geographical trend studies of mainly long range transport of contaminants in the atmosphere and biota to Greenland. The project will provide an important input to international convention works such as the Stockholm Convention and the Long-range Trans-boundary Air Pollution.

Heavy metals Long-range transport Modelling Polar bear Persistent organic pollutants (POPs) Seabirds Pesticides Atmosphere Temporal trends Marine mammals
19. Monitoring salmon and sea trout in Tornio River

Tornio River has endemic salmon and sea trout populations. Their monitoring is based on international obligations to secure biodiversity. The project comprises of long term data of the species’ juvenile production and amounts of migrant individuals.

Biology Fish trout. salmon Reproduction Temporal trends
20. Fish catch monitoring in Lake Inarijärvi

Monitoring the state of Lake Inarijärvi fish populations, fishing pressure and fish stocking success. Monitoring program is designed for detecting impact of water level regulation and controlled by the ministry of agriculture and forestry.

Biological effects Biology vendace. Fish trout Reproduction Temporal trends white fish