SAON Inventory

SAON Inventory

The purpose of the Sustaining Arctic Observing Networks (SAON) is to support and strengthen the development of multinational engagement for sustained and coordinated pan-Arctic observing and data sharing systems. SAON was initiated by the Arctic Council and the International Arctic Science Committee, and was established by the 2011 Ministerial Meeting in Nuuk.

The SAON inventory builds on a survey circulated in the community at the inception of the activity. This database is continously updated and maintained, and contains projects, activities, networks and programmes related to environmental observation in the circum-polar Arctic.


Other catalogs through this service are AMAP, ENVINET and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 61 - 80 of 269 Next
61. National Research Council (CNR) (CNR)

Italy’s leading national research institution, the CNR has been supporting research activity at Ny-Ålesund since 1997, when the scientific station “Dirigibile Italia” was acquired. This infrastructure supports Arctic research conducted by the national research community. In 2008, it was improved through the construction of the Amundsen-Nobile Climate Change Tower and the actikvity largely enlarged with the Climate Change Tower Integrated Project (CCT-IP - Scientific cooperation, particularly focused on atmospheric science including pollutants distribution and ozone studies, on oceanography and on marine biology and biodiversity was developed by CNR scientists in particular with NPI and AWI; CNR is coordinating actions (EU-GMOS project) to improve and implement the observational system related to mercury. CNR is also involved in the SIOS preparatory phase project, and in Italy it is engaged to coordinate interested Italian expertises in a common scientific plan and actively promote Italian participation to SIOS final multidisciplinary platform. In the years to come, CNR intends to promote the improvement of research activity and to reinforce international cooperation of the Italian research groups, and to provide a significant contribution to the observational system in the Arctic, following the lines recommended by SAON. Together with the improvement/development of a supersite at Ny-Ålesund and large contribution to SIOS, CNR will operate to contribute/sustain thematic networks (Polar-AOD for aerosol and GMOS for mercury leading from CNR).

Pollution sources Environmental management Oceanography Atmosphere Ecosystems
62. International Circumpolar Surveillance System (ICS) (ICS)

to establish a network of hospital and public health laboratories throughout the Arctic which would allow collection and sharing of uniform laboratory and epidemiological data between Arctic countries that will describe the prevalence of infectious diseases of concern to Arctic residents and assist in the formulation of prevention and control strategies. Main gaps: Currently the sytem only monitors invasive bacterial diseases and tuberculosis but has the potential to be expanded to other countries and could be adapted to monitor other human health issues of concern to Arctic countries.

Human health
63. Northern Human Biomonitoring – Northern Contaminants Program (NCP)

The NCP aims to reduce and, wherever possible, eliminate contaminants in traditionally harvested foods, while providing information that assists informed decision making by individuals and communities in their food use. The biomonitoring program monitors concentrations of contaminants in human tissues in the North and assesses spatial and temporal patterns/trends. Where available, contaminant guidelines are used to evaluate risk to populations/communities. A multi-disciplinary approach is used to evaluate contaminant concentrations, health effects, dietary research, and risk management/communication to meet the objectives of the NCP. Main gaps: Trend data of legacy POPs and metals, particularly for communities having only two sampling periods; measurements of tissue concentrations of emerging contaminants and other contaminants of interest (e.g., food preservation/storage, personal care products); health effects data. Network type: Thematical observations: Contaminant concentrations and health effects data - Field stations: None, community / population based research. - Community based observations: Participation of community health workers and community residents is essential for data collection through tissue samples - Coordination: NCP management committee, review teams, and regional contaminant committees all involve members from federal governments, territorial and provincial governments, northern Aboriginal partner organizations throughout all phases of research planning, implementation and reporting.

Human health
64. Greenland Marine Benthos Survey

To establish a modern, comprehensive checklist and database of the marine, benthic macrofauna in Greenland territorial waters from the shore to 1000 m depth Main gaps: Lack of recent field monitoring programmes. Missing data from the northernmost and very few data from south-eastern coastal stretches and adjoining marine territory. Too few recent fauna monitoring programs in the whole area.

65. GRENE (Green Network of Excellence) (GRENE)

1. Priority Research Theme (1) Clarification of the mechanism of the Arctic amplification. (2) The role of Arctic in the global climate change and future projection. (3) Evaluation on the influence of the Arctic Environmental Change to the weather in the Japan area and fishery. (4) Future projection of the sea ice distribution in relation to the evaluation Arctic route. 2. Basic infrastructure (1) Arctic research cruises by Japanese and foreign ships/ice breaker. (2) Cloud radar system. (3) Data archive system. 3. Establishment of “Japan Consortium for Arctic Environment Research” 4. Budget size: 650, 000, 000 Japanese Yen per year. (appox. 8 million USD per year) Network type: research programme

Hydrography Climate Sea ice Oceanography Atmosphere
66. Aerological Observation Network in the North Polar Region

Monitoring and study of free atmosphere in the North Polar Region

67. Hydrometric Observations

To provide for the collection, interpretation, and dissemination of surface water quantity data and information and services that are vital to meet a wide range of water management, engineering and environmental needs across Canada. Main gaps: The current hydrometric network is deficient in terms of understanding the regional hydrology and river regimes across Canada. The map below integrates Environment Canada’s two key frameworks: the National Drainage Area Framework with the National Terrestrial Ecological Framework to identify network deficiencies. In order to have sufficient information there needs to be at least one active hydrometric station measuring natural flow in each corresponding ecodistrict within a sub-sub drainage area. This strategy ensures that there will be sufficient information to understand the hydrological processes and the interrelationships with the landscape. This information is essential for research and enhancing our predictive capabilities and data transfer. As the map shows, areas of sufficiency are concentrated in the southern, more populated regions of the country. Network sufficiency declines to the north and northeast, with great extents of northern Canada having no coverage at all. Network type: in-situ.water level and streamflow monitoring stations

Oceanography Atmosphere Human health Ecosystems
68. Permafrost observational networks in Russia

Lack of consistent spatially representative and sufficiently long time series characterizing the state of permafrost and its dynamics under changing climatic conditions necessitates improvement and further development of observational networks. The purpose of this section is to provide an insight into the permafrost networks available in the Russian part of the Artic. Data characterizing the state and dynamics of Russian permafrost in the past several decades come from three independent sources. The first source of data is soil temperature observations up to 3.2 m. depth conducted at selected meteorological stations. These conventional measurements are not specifically targeted at studying permafrost parameters. Two other networks, authorized under the Global Climate Observing System (GCOS) and its associated organizations, have been developed for monitoring permafrost temperature and seasonal thaw depth. Temperature observations in the boreholes are conducted under the framework of the Thermal State of Permafrost (TSP) project. Another source is the data from the Circumpolar Active Layer Monitoring (CALM) project. Here we give brief description of these networks and results obtained so far for Russian permafrost regions. Main gaps: Although soil temperatures are measured at many of the Russian stations, observations in permafrost regions are sparse and do not capture the whole range of permafrost variability due to difference in climatic and biophysiographical conditions. • Evaluation of the soil temperature regime and dynamics through correlations with air temperatures is not an option, since only a small part of total variability is explained. • Other networks and measurements are needed to evaluate the dynamics of permafrost.

69. Arctic Avian Monitoring Network

The main objective of the Arctic Avian Monitoring Network is to characterize the occurrence of birds in the Arctic to support regulatory responsibilities and conservation of birds and the biodiversity on which they depend. Temporal and spatial changes can be used to indicate changes in ecosystems that might otherwise be difficult to detect (e.g. marine areas) and can also be used to model predicted changes due to human activity. Main gaps: Large gaps both spatially and temporally. Many datasets cover short periods. Some species groups not well covered (e.g. landbirds and shorebirds) Network type: Network consists of programs divided into three species themes that combine common aspects of biology and human use: Waterfowl: e.g. ducks geese and swans • centered on aerial surveys of high density breeding areas and following non-breeding birds using satellite telemetry Seabirds: e.g. gulls, terns and auks • centered on surveys at breeding colonies and of birds at sea (either by direct observation or through the use of data loggers) Shorebirds: e.g. sandpipers, plovers and phalaropes • focused on broad-scale, stratified sampling of terrestrial areas and aerial surveys of non-marine habitats

Oceanography Human health Ecosystems
70. Ice-drifting buoy observation in sea ice area of the Arctic Ocean

Ice-drifting buoy observation in sea ice area of the Arctic Ocean Main gaps: not well documented…

Hydrography Climate Sea ice Oceanography Atmosphere
71. Rabben station

Research station in Ny-Ålesund, Svalbard

72. Monitoring of Biodiversity in the Arctic

Briefly and schematically, data on the availability of monitoring information on seabirds nesting in the Russian Arctic are given in the Table. It should be noted that the less favorable situation with monitoring of nesting sea birds is in the central Russian Arctic and its high-latitude regions where colonies exist of Arctic and high-Arctic type. No monitoring is being conducted there, and no systematic observations were made before. The situation is a little bit better with facultativecolonial disperse nesting species, they are rarely the subjects of long-term research and monitoring programs. The situation is better with the Arctic peripheral zones, i.e. White-Barents Seas and Bering-Far East sectors. There are areas covered by long-term observations, but they are often those that are out of the Arctic region according to CAFF definition (Onega Bay, Taui Bay, Commander Islands). Unfortunately, the most representative sea bird monitoring series in the CAFF area, collected in Kandalaksha and Wrangel Island reserves, were interrupted and/or disturbed in the 1990s (in terms of continuity of methods of material collection).

73. Observation of Greenhouse Gases using Aircraft and Tower Network in Siberia

Cooperation with: ・Institute of Atmospheric Optics, Tomsk, Russia ・Permafrost Institute, Yakutsk, Russia ・Central Aerological Observatory, Moscow, Russia ・Institute of Microbiology, Moscow, Russia

Climate Pollution sources Atmosphere
74. Spain general summary

Our objective in present SAON meeting was to know more about SAON activities and plannings to coordinate and promote guidelines criteria for observations in the ARctic Present Spain Research in Arctic is performed mainly for universities and scientific institutions , down the responsability of the Science Department with the support of several national institutions including the Defense Department and Foreign Affairs Institutions are coordinated by the National Polar Committee. The National Scientific Program finance the activities in the polar zones Although our main scientific activities are in Antarctica the activity of Spain in Arctic is rapidly increasing following the fact that Arctic research is a priority task in our Science Program At present we have detected 16 scientific groups working activelly in the differnts fields of Arctic topics (glaciology, meteorology, permafrost, high atmosphere, ecology, physical oceanography, marine geology and biology) These activities are mainly performed in cooperation with Arctic countries Institutions via institutional or researchers contacts About our media to work in Arctic ocean Spain has at present two multiporposes oceanographic research ships In the last years our Ocanographic ship Hesperides has developed two campaigns in The area of Greenland and Svalvars Island in the fields of marine Geology , marine biology and physical oceanography For next summer Hesperides will perform a third oceanographic campaign close to the Atlantic coast of Greenland Other national institutions have been working in marine biology campaigns including fisheries stock evolution Spain has a National Centre of Polar Data were all researchers must enter their raw data gathered in the polar campaigns We considerer , at present , our interest to cooperate inside SAON board, considering that besides other possible cooperation to SAON tasks could be a cooperation with our Polar Data Centre

Geology Oceanography Atmosphere Ecosystems
75. Arctic Atmospheric Boundary Layer Observing System (ABLOS)

monitoring of thermal and humidity parameters of arctic atmospheric boundary layer in horizontal and vertical profile covering glaciated area, non-glaciated area and mountain peak

Climate Sea ice
76. Dynamic Response of Arctic Tidewater Glaciers to Climate Change (GLACIODYN-T)

University of Silesia in close cooperation with the Institute of Geophysics, Polosh Academy of Sciences (PAS) has developed and maintain monitoring of glaciers in SW Spitsbergen, Svalbard. Monitoring network of land ice masses in Southern Spitsbergen is aimed to study the response of tidewater glaciers to climate warming, with focus on mass loss due to calving. Seasonal and interannual changes in glacier flow velocity, fluctuation of terminus position and calving rate are studied for better understanding of ice berg calving. The target glacier Hansbreen has a comprehensive ground observing system (Figure 21). It consists of mass balance stakes, automatic weather stations (AWS), time lapse GPS survey of velocity at stake T4, two time lapse cameras, automatic laser ranger and panoramic radar for measurements of ice cliff fluctuations. Moreover, mass balance, including snow cover studies are conducted every year since 1989. In some years high frequency ground penetrating radar is used for snow thickness measurements along the same profiles on the glacier. Satellite remote sensing is used for extraction of data on glacier flow velocity and fluctuation of termini and calculation of mass loss by calving. Up-to-dated inventory of glaciers in Southern Spitsbergen has been done by remote sensing methods (Figure 23). Studies are conducted in cooperation with Spanish, Norwegian and Italian partners. Cooperation with Institute of Oceanology, PAS (since 2010) is developed to monitor sea water parameters for studies of sea water - ice cliff interaction. Main gaps: Gaps in series of observations due to failures of equipment, lack of power supply or damage by polar bears. Long term tide and wave record required. More tidewater glaciers advisable with monitoring of flow velocity by GPS as ground truth data for calibration of remote sensing survey.

77. Hans Glacier Monitoring (HGM) (HGM)

Main objectives of Hans Monitoring Network are collecting long-term record of mass-balance measurements and surface glacier velocities. Additionally we collect meteorological parameter at 3 AWSs located in ablation and accumulation area and ELA.

78. Siglingastofnun ‐ Icelandic Maritime Administration, IMA (IMA)

The Minister of the Interior is responsible for centrally administrating maritime, harbour and lighthouse affairs, except where otherwise provided for in a different law. The IMA, with a staff of around 70, handles numerous activities in the field of maritime administration and supervision, such as operation of lighthouses and navigational systems, vessel registration and supervision of ship surveys, manning and certification. The IMA also conducts research into ship stability and ship and harbour security and harbour development, coastal changes and coastal protection. Main gaps: Not specified Network type: ‐ Thematic observations in mainfields

Environmental management Shipping
79. Sodankylä-Pallas super site of the Finnish Meteorological Institute (FMI) (Sodankylä-Pallas)

Atmosphere monitoring, cryosphere monitoring, atmosphere-biosphere interaction. In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments Network type: In situ monitoring with automatic and manual systems (e.g. synoptic meteorological observations since 1908), measurements with ground-based reference systems of space-borne remote sensing instruments

Geology Atmosphere Ecosystems
80. ArcticNet Network of Excellence Observing Program

ArcticNet brings together scientists and managers in the natural, human health and social sciences with their partners in Inuit organizations, northern communities, government and industry to help Canadians face the impacts and opportunities of climate change and globalization in the Arctic. Over 110 ArcticNet researchers and 400 graduate students, postdoctoral fellows, research associates and technicians from 28 Canadian universities and 8 federal departments collaborate on 28 research projects with over 150 partner organizations from 15 countries. The major objectives of the Network are: • Build synergy among existing Centres of Excellence in the natural, human health and social Arctic sciences. • Involve northerners, government and industry in the steering of the Network and scientific process through bilateral exchange of knowledge, training and technology. • Increase and update the observational basis needed to address the ecosystem-level questions raised by climate change and globalization in the Arctic. • Provide academic researchers and their national and international collaborators with stable access to the coastal Canadian Arctic. • Consolidate national and international collaborations in the study of the Canadian Arctic. • Contribute to the training of the next generation of experts, from north and south, needed to study, model and ensure the stewardship of the changing Canadian Arctic. • Translate our growing understanding of the changing Arctic into regional impact assessments, national policies and adaptation strategies. Main gaps: [Not specified] Network type: Thematical observations:Yes Field stations: Yes on Land (see CEN sheet) and Marine (CCGS Amundsen) Community based observations: Yes Coordination: Yes

Oceanography Atmosphere Human health Ecosystems