The purpose of the Sustaining Arctic Observing Networks (SAON) is to support and strengthen the development of multinational engagement for sustained and coordinated pan-Arctic observing and data sharing systems. SAON was initiated by the Arctic Council and the International Arctic Science Committee, and was established by the 2011 Ministerial Meeting in Nuuk.
The SAON inventory builds on a survey circulated in the community at the inception of the activity. This database is continously updated and maintained, and contains projects, activities, networks and programmes related to environmental observation in the circum-polar Arctic.
Other catalogs through this service are AMAP, ENVINET and SEARCH, or refer to the full list of projects/activities.
To edit or add records to any of the catalogs, log in or create an account.
The main purpose of IMO is to contribute towards increased security and efficiency in society by: • Monitoring, analyzing, interpreting, informing, giving advice and counsel, providing warnings and forecasts and where possible, predicting natural processes and natural hazards; • issuing public and aviation alerts about impending natural hazards, such as volcanic ash, extreme weather, avalanching, landslides and flooding; • conducting research on the physics of air, land and sea, specifically in the fields of hydrology, glaciology, climatology, seismology and volcanology; • maintaining high quality service and efficiency in providing information in the interest of economy, of security affairs, of sustainable usage of natural resources and with regard to other needs of the public; • ensuring the accumulation and preservation of data and knowledge regarding the long-term development of natural processes such as climate, glacier changes, crustal movements and other environmental matters that fall under IMO‘s responsibility. IMO has a long-term advisory role with the Icelandic Civil Defense and issues public alerts about impending natural hazards. The institute participates in international weather and aviation alert systems, such as London Volcanic Ash Advisory Centre (VAAC), the Icelandic Aviation Oceanic Area Control Center (OAC Reykjavík) and the European alarm system for extreme weather, Meteoalarm. Network type: Thematic observations in 6 different fields
Iceland GeoSurvey ÍSOR is a self‐financing, state‐owned, non‐profit institution in the field of natural sciences, it’s main activity being related to the geothermal industry in Iceland and abroad. It was established 2003, when the GeoScience Division of Orkustofnun (the National Energy Authority of Iceland), was spun off as a separate entity according to the law of Iceland GeoSurvey no. 86, March 26th 2003 (http://www.althingi.is/lagas/135a/2003086.html). The main role of ÍSOR is to work on projects and research in the field of natural resources and energy, as the directive board of the institute decides. ÍSOR offers research consulting services worldwide on most aspects of geothermal exploration, development, and utilization, and provide training and education on related issues. It is based on six decades of continuous experience in the field of geothermal and hydropower research and development. The focus is on geothermal exploration, development, and utilization, but cover also many other geoscience‐related fields as well, including groundwater studies, marine geology, and environmental monitoring. Main gaps: Not specified Network type: Field stations Thematic observations
The main mission of the International Arctic Systems for Observing the Atmosphere (IASOA) is coordination of atmospheric data collection at existing and newly established intensive Arctic atmospheric observatories. Data of interest to the IASOA consortium include measurements of standard meteorology, greenhouse gases, atmospheric radiation, clouds, pollutants, chemistry, aerosols, and surface energy balances. These measurements support studies of Arctic climate change attribution (why things are changing), not just trends (how things are changing). IASOA is responsive to growing evidence that the earth system may be approaching environmentally critical thresholds within decadal time scales. The information from IASOA will not only enhance scientific understanding but will also support decisions by the global community regarding climate change mitigation and adaptation strategies. Main gaps: Not all observatories are members of established global networks such as GAW and BSRN. It is recommended that IASOA observatories that are not members of these global networks be evaluated for potential membership and that roadblocks to membership be investigated. Other types of measurement gaps include, but are not limited to: (1) Radar-lidar pairs at each observatory to assess cloud properties; (2) Flux towers at each observatory for methane and CO2 fluxes; (3) Aerosol measurements at each observatory; and (4) Surface and upper air ozone measurements at each observatory. Network type: Predominantly atmospheric measurements.
The Arctic Station is located on the south coast of the Disko Island in central west Greenland. It is thus facing the Disko Bay and is characterized by an arctic, marine climate. There are 3 building comprising guest facilities, staff accomodation, laboratory and library that are located in a nature sanctuary, approximately 1 km west of a small town, Qeqertarsuaq (formerly Godhavn), with ca. 1100 inhabitants. Within the town community is located all necessary service facilities, incl. several shops, bank, postoffice, church and a hospital. The station offers a 'state of the art' platform for year-round environmental research. The Arctic Station maintains a stat-of-the-art automatic weather station located in the immediate vicinity of the Arctic Station. The datalogging at Arctic Station (every half hour) comprises: air temperatur, humidity, incoming and outgoing radiation, wind speed and direction, rainfall, ground temperatures (5, 60 and 150 cm below surface) and temperature in solid rock 2 metre below surface. In addition to the above the station also maintains a freshwater, a marine and a terrestrial monitoring program. The whole moitoring program is call DiskoBasic.
CBMP is a cornerstone monitoring program of Conservation of Arctic Flora and Fauna (CAFF). It is a international network of scientists, government agencies, Indigenous organizations and conservation groups working together to harmonize and integrate efforts to monitor the Arctic's living resources. (... more to be edited from the co-lead countries)
- Provide continuous measurements of high scientific quality of total ozone and solar ultraviolet radiation, to be used in assessments related to health- and environmental issues. - Provide data that can be used for short term forecasting and assessments of long term changes of total ozone and UV radiation. - Provide information to the public and scientific communitee on the status and the development of the ozone layer and UV radiation - Provide information to the public on sun protection when episodes of high UV Index may occur.
TOV is based on integrated monitoring where species and ecosystems are seen in context, providing better opportunities to interpret the results. TOV areas include seven monitoring sites in Boreal birch forest, all nature-protected areas. Lund in the south to Dividalen north is monitoring; lichen and algae on trees, ground vegetation, rodents, passerine birds, grouse, Gyrfalcon and Golden Eagle. There are also 10 Boreal spruce forest areas monitored, only for ground vegetation. The range of areas reflects both climate variability and differences in impacts from long-range pollutants throughout the country.
Monitoring of flora and vegetation includes records of species and species composition of ground vegetation and mosses, lichens and fungi on tree trunks. Fauna monitoring includes population and reproduction monitoring for species which may indicate effects of long-range transboundary air pollution, and population monitoring of key species. In addition, a nationwide survey of selected variables, prevalence of lichen and algae on trees, as well as contaminants in wildlife species and eggs from birds of prey. Observed changes are considered in relation to the influence of anthropogenic factors.
The sample plot-based national forest inventory (RIS-RT) has been a continuous activity at SLU (and the forest research organizations existing before SLU) since 1923. All Sweden is included except the subalpine birch forest along the mountain chain. The national forest inventory is part of Sweden’s official statistics and is maintained by the Department of Forest Resource Management (SLU-FRM). The sampling strategy combines random and fixed plots and covers the country every 5 years. Each year around 10 000 sample plots are field surveyed nationwide. Approximately 200 variables are recorded for each plot.
Monitoring of ice conditions: providing of collection, analysis, archiving and presentation of information obtained from different information sources The continuous monitoring system is based on information from two main groups. The first one is immediate direct observation of the state of ice cover. The information sources are Roshydromet’s permanent polar stations, automatic weather stations and buoys, satellite images in different wave ranges through international hydrometeorological information exchange channels under the auspices of WMO (ETSI) and Ice Services of different countries. Occasional observations by marine expeditions and “North Pole” drifting stations also belong of this group of observation. These are so-called initial or raw data to be further processed, accumulated and archived. As a rule, this information is interesting only to specialists and is not presented without special processing. The second one is processed and summarized information, i.e. diagnostic, analytical and prognostic information. Diagnostic information is a result of processing of initial or raw information. These are adapted and geographically bound satellite images, ice maps, diagnosis of the current state in the form of descriptions and different bulletins. Analytical information is a consolidation of heterogeneous initial and diagnostic information on the ice cover state in the form of overviews and bulletins for different periods of time and different components of ice conditions. Prognostic information is a forecast of different lead times for different phenomena and characteristics of ice conditions. Actually ESIMO AARI web-portal presents a series of group 2 information products having the best informativity and ready for the direct use by customers.
Project aims indicate of changes of main terrestrial cryosphere components – glaciers and permafrost. Research on glaciers assumes both to inspect recent changes (mass balance, geometry, thermal structure and widely understood dynamics) and to reconstruct past events (especially in base on subaqual records in the marine-part forefields of the tide-water glaciers). Selected research results are part of the World Glacier Monitoring Service (WGMS). The most widely studied are Waldemar Glacier, Irene Glacier and Elise Glacier. Several research aspects, such as geometry of glaciers are investigated for more than 30 years, since first NCU Polar Expedition in 1975. Permafrost investigations are focused on the depth of the summer active layer thawing and thermal properties of it. Selected results constitutes a part of Circumpolar Active Layer Monitoring (CALM) programme.
Multidisciplinary investigations at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5,500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2,500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Time-series studies at the HAUSGARTEN observatory, covering almost all compartments of the marine ecosystem, provide insights into processes and dynamics within an arctic marine ecosystem and act as a baseline for further investigations of ongoing changes in the Fram Strait. Long-term observations at HAUSGARTEN will significantly contribute to the global community’s efforts to understand variations in ecosystem structure and functioning on seasonal to decadal time-scales in an overall warming Arctic and will allow for improved future predictions under different climate scenarios.
The Northern Contaminants Program aims to reduce and where possible eliminate long-range contaminants from the Arctic Environment while providing Northerners with the information they need to make informed dietary choices, particularly concerning traditional/country food. To achieve these objectives the NCP conducts research and monitoring related to contaminants in the Arctic environment and people. Monitoring efforts focus on regular (annual) assessment of contaminant levels in a range of media, including air, biota and humans. Environmental research is conducted into the pathways, processes and effects of contaminants on Arctic ecosystems while human health research focuses on assessing contaminant exposure, toxicity research, epidemiological (cohort) studies, and risk-benefit assessment and communications. Main gaps: Contaminant measurements in Arctic seawater, toxicity data specific to Arctic species. Network type: - Thematical observations: Contaminants levels and relevant ancilliary parameters - Field stations: Atmospheric observing stations at Alert, Nunavut and Little Fox Lake, Yukon. - Community based observations: Numerous communities throughout the Canadian Arctic participate in sample collection - Coordination: National coordination of the program provided by the NCP secretariat, which also acts as liaison with AMAP.
The main objective is to monitor the breeding seabird populations (primarily Uria lomvia, Somateria molissima and Rissa tridactyla).
to monitor the mass balance and glacier flow of Arcturus Glacier and of Schuchert Glacier adjacent to Malmbjerg (Stauning Alps, E Greenland) Network type: commercial consultancy including in-situ monitoring, ablation stakes, ground penetrating radar, modelling
In the context of the tasks SAON SG steering group, the topology of the Arctic hydrometeorological observation network can be presented in the following concise form: 1. Agrometeorological; 2. Actinometric; 3. Aerological (radiosounding); 4. Water balance; 5. Hydrological on rivers; 6. Hydrometeorological on lakes; 7. Glaciological; 8. Meteorological; 9. Marine hydrometeorological (in the coastal zone, river estuaries, open areas including marine vessel and expeditionary); 10. Avalanche; 11. Ozone measuring; 12. Heat balance; 13. Atmospheric electricity; 14. Water, soil and snow surface evaporation; 15. Chemical composition of water and air. Observation network data are operationally transferred to Roshydromet’s data telecommunication network except for those indicated in items 4, 7,12-15. The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones. Meteorological observations are considered as the main type of observations. To establish a common database and control timely and complete collection and distribution of information, a catalog of meteorological bulletins is being created to be the plan of hydrometeorological information transfer from the sources to Roshydromet’s data telecommunication network to distribute among information recipients The catalog of meteorological observations is maintained by State Institution “Hydrometeorological Center” and State Institution “Main Radio-Meterological Center”. Electronic version of the catalogs of meteorological bulletins is maintained by State Institution “Main Radio-Meterological Center” and located on the Internet site http://grmc.mecom.ru. The catalog of meteorological bulletins contains the following information: − Name of Roshydromet’s subordinate Federal State Institution and observation point to input data into the automated data system; − shortened title of the hydrometeorological bulletin in proper format; − observation data coded form; − hours of observation; − data transfer check time; − number of observation points taking part in one bulletin; − lists of five-digit indices for observation points. Changes are entered into the catalogs of meteorological bulletins quarterly. WMO’s WWW is considered as the main foreign information consumer. The lists of WMO correspondent stations are given in WMO publications # 9, vol. C, part 1 (Catalog of Meteorological Observations), vol. A (Observation Stations). 2. SAON is expected to stimulate the process of improving configuration and completeness of the circumpolar region monitoring system as a potential tool for international consolidation of the opportunities available in the functioning of observation networks in order to improve national standards quality and ensure more complete compliance of the Arctic research strategies proposed to socioeconomic needs and interests of Arctic countries 3. The catalog of points and main observations is given in Table 1 (see Fig. 1). The maximum development of the Russian hydrometeorological observations in the Arctic was reached in early 1980s, when information was received from 110 stations. In subsequent years, the number of stations decreased more than twice (Fig. 2). The current level of observations is determined by the functioning of a network consisting of 49 points two of which are automatic weather stations. Three points are temporarily removed from operation. In short term, 8 automatic stations are expected to be opened; while in medium and long term, the number of manned observation points will increase up to 52-54, and the number of automatic ones – up to 20-25. For the manned network, the meteorological program includes a set of eight-hour observations of: atmosphere pressure, wind parameters, air and soil temperature, relative humidity, weather phenomena, cloud height, visual range, precipitation, while for automatic weather stations – a set of reduced 4-hour observations. The marine hydrometeorological program includes coastal observation of temperature, water salinity (density), sea-level variations, heave, ice distribution (and thickness) as well as meteorological parameters under the change of observation conditions from hourly to ten-day observations. The river hydrological program is quite similar to the marine one. It does not include observations of water density, however, they can be included for the stations having a special status, measurement of water discharge, alluvia and chemical composition of water. The programs will include hourly and ten-day observations. The aerological program will include 1-2 –hour measurements of: atmosphere pressure and wind parameters on selected isobaric surfaces. Actinometric observations include measurement of 5 components of atmosphere radiation balance in case of the full program and measurement of total radiation under a reduced program. Network type: The main networks in terms of the number of observation points and volume of information obtained are meteorological, marine hydrometeorological, river hydrological, aerological and actinometric ones.
The main objective of National Land Survey of Iceland is to provide and share geographical information on Iceland. The Survey gathers and sells digital data on Iceland as well as selling digital aerial photos. The institute is located at Stillholt 16‐18 in Akranes 50 km from Reyekjavik where it has been located since January 1, 1999. The institute currently has a staff of 29. Main gaps: Not specified Network type: Thematic observations
INGV operates in the Arctic region with observational activities in Svalbard, near the area of Ny-Ålesund, where the Institute has installed three stations to monitor ionospheric scintillation, currently in operation. In Svalbard, the PEGASO (Polar Explorer for Geomagnetic And other Scientific Observations) project has performed several stratospheric balloon launches (Pathfinders) with the aim of studying the Earth's magnetic field in an area with poor coverage measurements and of studying the possible trajectories of circumpolar winds at high altitudes. At the Greenland Base of Thule, INGV in collaboration with CNR, DMI (Danish Meteorological Institute), University of Rome La Sapienza and ENEA, carries out spectrometric observations for the analysis of stratospheric chemistry and mesosphere to monitor the ozone layer. In cooperation with In addition, an upper atmosphere permanent observatory for magnetosphere and Ionosphere sounding, including Auroras, and other geophysical processes is operated in Greenland, Zackemberg station in cooperation with Danish scientists. INGV is currently involved in the coordination of two European initiatives: a) EMSO (European Multidisciplinary seafloor Observatory) a European research infrastructure of ESFRI (European Strategy Forum on Research Infrastructures), which counts to establish a multi-parametric permanent network in the surrounding European seas, including the Arctic area. The project began in April 2008 with the participation of 11 European countries; b) EUROANDRILL, created under the aegis of the European Science Foundation, aims to drill key areas of polar areas to study past and future climate. The project involves the involvement of 10 European and 3 extra-European countries. The Institute is also active in other projects in the Arctic, in particular actively participates in the seismic network GLISN, developed from the existing stations in and around Greenland.
OGS conducts scientific activities within the fields of Earth Sciences and Polar Science in the Arctic, primarily but not exclusively, in the sea with the vessel OGS-Explora. Current OGS activities in the Arctic include a) Pergamon, EU COST Action: European network for study and long-term monitoring of permafrost, gas hydrates and release of methane in the Arctic and climate change impacts; b) IBCAO (International Bathymetric Chart of the Arctic Ocean) to develop a digital bathymetric database to the north of 64°. OGS is the Editorial Board and provides multibeam data; c) Research activities in the frame of PNRA (Italian Antarctic and Arctic National Research Programme) through several projects devoted to paleoceanographic study of the thermohaline circulation on the Eirik Drift (Greenland and study of paleoclimate in the Barents Sea using geological and geophysical data from the International Polar Year EGLACOM cruise of OGS Explora. CORIBAR international project (IT, DE, ES, N, DK) will provided in the next 1-2 years new data for the last item, through MEBO drilling on board RV Maria S. Merian.
Within the Unit for Environment and Energy Modeling (UTMEA), the Laboratory Earth Observations and Analyses within UTMEA (UTMEA-TER) carries out long-term observations of stratospheric chemistry and mesosphere in Greenland, Thule station. Stratospheric processes (evolution in atmospheric temperature, ozone depletion) and chemistry are monitored and investigated by stratospheric lidar as well as spectrometers, in strong cooperation with INGV and DMI. Since 1990 numerous measurement campaigns have been carried out, also on the international level (EASOE, SESAME, THESEO, ESMOS/Arctic. ENEA’s Diagnostics and Metrology Laboratory (UTAPRAD-DIM) has been participating in polar campaigns since the late 1990's. In particular, it has developed the laser spectrofluorimeter CASPER (patented) and prototypes of different lidar fluorosensor: for ships, underwater remotely operated vehicles and patented miniature Unmanned Aerial Vehicles. These instruments participated in 3 oceanographic cruises (2006, 2007 and 2008) at Svalbard, on board of the "Oceania" in the context of a collaboration with the Institute of Oceanology of the Polish Academy of Sciences. Their use is also envisaged under the Italian-Canadian CLIMAT (complementary use of lidar to improve bio-optical models derived from satellite system in the St. Lawrence).
Long-term Obs. Site. Super-sites、experiment-sites Traverse Obs. Line