SAON Inventory

SAON Inventory

The purpose of the Sustaining Arctic Observing Networks (SAON) is to support and strengthen the development of multinational engagement for sustained and coordinated pan-Arctic observing and data sharing systems. SAON was initiated by the Arctic Council and the International Arctic Science Committee, and was established by the 2011 Ministerial Meeting in Nuuk.

The SAON inventory builds on a survey circulated in the community at the inception of the activity. This database is continously updated and maintained, and contains projects, activities, networks and programmes related to environmental observation in the circum-polar Arctic.

 

Other catalogs through this service are AMAP, ENVINET and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 13 of 13
1. GeoBasis - Zackenberg

The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes meteorology, carbon flux and energy exchange, snow cover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and – sediment

Active layer Arctic Atmosphere carbon cycle Carbon dioxide CH4 Climate change CO2-flux measurements Energy Balance geomorphology Hydrology Hydrometeorology meteorology Permafrost Snow and ice properties snow cover Soils
2. Zackenberg Ecosystem Monitoring (ZERO) (ZERO)

The objective of the station is to facilitate ecosystem research in the High Arctic. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Nuuk Ecological Research Operations (see below) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics

Soils Climate Sea ice Oceanography Ecosystems
3. Nuuk Basic Ecosystem Monitoring (NERO) (NERO)

The objective is to allow comparative studies of ecosystem dynamics in relation to climate variability and change in respectively a high arctic and low arctic setting as Nuuk Basic comprises the same components as Zackenberg. According to the framework programme of Zackenberg Ecological Research Operations (ZERO) this includes: - Basic quantitative documentation of ecosystem structure and processes; - Baseline studies of intrinsic short-term and long-term variations in ecosystem functions; - Retrospective analyses of organic and inorganic material to detect past ecosystem changes; - Experimental studies enabling predictions of ecosystem responses to Global Change. The programme is coordinated with Zackenberg Ecological Research Operations (see above) within the Framework of Greenland Ecosystem Monitoring (GEM). Main gaps: Winter dynamics

Soils Climate Sea ice Oceanography Ecosystems
4. Sweden Soil and Vegetation Inventory of Arable Land

The first sampling for the soil and vegetation inventory of arable land was done in 1994-1995. The program covers arable land in Sweden and is designed to describe the state of Swedish arable land and the quality of the crop in relation to soil status, cultivation measures, and means of operation. At present soil sampling is made in 2000 fixed sampling points visited every 10th year.

Ecosystems Soils
5. Íslenskar Orkurannsóknir ‐ Iceland Geosurvey, ÍSOR (ÍSOR)

Iceland GeoSurvey ÍSOR is a self‐financing, state‐owned, non‐profit institution in the field of natural sciences, it’s main activity being related to the geothermal industry in Iceland and abroad. It was established 2003, when the GeoScience Division of Orkustofnun (the National Energy Authority of Iceland), was spun off as a separate entity according to the law of Iceland GeoSurvey no. 86, March 26th 2003 (http://www.althingi.is/lagas/135a/2003086.html). The main role of ÍSOR is to work on projects and research in the field of natural resources and energy, as the directive board of the institute decides. ÍSOR offers research consulting services worldwide on most aspects of geothermal exploration, development, and utilization, and provide training and education on related issues. It is based on six decades of continuous experience in the field of geothermal and hydropower research and development. The focus is on geothermal exploration, development, and utilization, but cover also many other geoscience‐related fields as well, including groundwater studies, marine geology, and environmental monitoring. Main gaps: Not specified Network type: Field stations Thematic observations

Geology Soils Geophysics Environmental management
6. Changes of North-Western Spitsbergen Cryosphere (CryoChange)

Project aims indicate of changes of main terrestrial cryosphere components – glaciers and permafrost. Research on glaciers assumes both to inspect recent changes (mass balance, geometry, thermal structure and widely understood dynamics) and to reconstruct past events (especially in base on subaqual records in the marine-part forefields of the tide-water glaciers). Selected research results are part of the World Glacier Monitoring Service (WGMS). The most widely studied are Waldemar Glacier, Irene Glacier and Elise Glacier. Several research aspects, such as geometry of glaciers are investigated for more than 30 years, since first NCU Polar Expedition in 1975. Permafrost investigations are focused on the depth of the summer active layer thawing and thermal properties of it. Selected results constitutes a part of Circumpolar Active Layer Monitoring (CALM) programme.

Soils
7. Hydrological issues of the glacierized Waldemar River catchment

Recently observed changes in glacierized areas significantly influences on water circulation features in those regions. Project assumes hydrological research in Waldemar River catchment as the example of the High-Arctic glacierized basin. Those investigations began in late 1970’s. From that date substantial changes in catchment characteristic are observed (e.g. decrease degree of glaciation). Glacier-fed river characteristics are well recognized all over the globe. But still there is a need to define how contemporary deglaciation processes affects the water circulation cycle. Basics hydrological features in Waldemar River Catchment are continuously investigated since 1995. In the close feature, a HIWRC programme will be expanded to include research of major glaciohydrological processes in catchment (e.g. internal glacial drainage and it contribution to total outflow). Study assume measurements in a few river points – both in close vicinity of glacier (with no other than glacial water source tributaries) and in lowest part of catchment (with periglacial tributaries).

Soils
8. Morphogenetic and morphodynamics conditions of development of the coast of the NW part of Wedel Jarlsberg Land (Spitsbergen) in the late Vistulian and Holocene (MORCOAST)

Arctic coast is extremely sensitive and important area of interaction between land and sea. The diagnosis of the mechanisms governing the polar zone is of fundamental importance for tracing the evolution of the coast caused by climate change. Diagnosis of morphogenesis and morphodynamics of the polar coast becomes important in recent years, a research priority, not only from the scientific point of view, but also practical. Therefore, the key aims of the project include: - determining the dynamics of morphogenetic processes with particular emphasis on marine processes within the coastal zone in the context of climate change after the Little Ice Age (LIA) and the development of model of the coast functioning during this period. - to try to reference this model to the development of the coast at the turn of Vistulian and Holocene (14-8 ka) by defining the stages of shaping the shoreline including glaciizostatic and eustatic and elements of tectonical and lithological features of the coastal zone.

Soils Oceanography
9. Nicolaus Copernicus University Polar Station, Spitsbergen (NCU PS)

The Polar Station of the University of Nicolaus Copernicus is located in the western part of the Oscar II Land, in the northern part of the coastal Kaffiøyra Lowland which is closed by the Forlandsundet from the west. The undertaken research included almost all components of the geographical environment. Scientific programs put pressure on research in glaciology, glacial geomorphology, permafrost and periglacial processes, as well as climatologic and botanical studies. Since 1995 glaciological research and the studies of permafrost of various ground types and their seasonal thawing, as well as meteorological observations have been the major issues on the research agenda. Glaciers pose the dominating feature of the Kaffiøyra region. Since the 19th century their area has decreased by about 30%. Thus, one of the main scientific issues studied there is the course and the reasons for the change in the glaciers’ range. This can be achieved by studying mass balance of the glaciers. Presently, mass balance of four glaciers is studied: the Waldemarbreen, the Irenebreen, the Elisebreen and the Aavatsmarkbreen. 39 The research includes both the summer balance (ablation and outflow from the glaciers) and the winter snow accumulation. The detailed research plans also refer to two large glaciers which end up in the sea. Those are the Aavatsmarkbreen in the north and the Dahlbreen in the south of the Kaffiøyra. Currently, subaquatic glacial relief of the bays in the Forlandsundet region is under scrupulous investigation. The results of the research can be obtained from the station’s website (www.stacja.arktyka.com), from the publications by the World Glaciological Monitoring Service (WGMS- IAHS), as well as the website of the Circumpolar Active Layer Monitoring (CALM- IPA). The research carried out in the N.Copernicus University Polar Station has enabled numerous scientists of most specialties of the Earth sciences (glaciology, climatology, hydrology, geomorphology, pedology and botany) to collect material for numerous papers, including master and doctoral theses. Scientific attractiveness of the Kaffiøyra’s geoecosystem has been appreciated by scientists from various scientific centres in Poland and elsewhere, who take part in interdisciplinary expeditions organized every year. The most Polish polar research in the north-west Spitsbergen is based on the N.Copernicus University Polar Station Once the station has had an extension addend, it can host 10-15 people at any one time. The new section of the station is 32 sq. m downstairs and 24 sq. m upstairs. This includes a study, a workshop, a bedroom as well as two bedroom entresols. The extension is connected with the old section of the station, which includes a living room and a bedroom, but there is also a separate entrance to the new part of the station. Additionally, the station gained extra storage floor, a laboratory, a bathroom, as well as a garage to keep boats, snowmobiles and engines. All together the station now has about 100 sq. m. The station is used 3 to 4 months annually, but it is possible to stay there for as long as a whole year. It is equipped with necessary technical facilities, motor-generators, solar panels, motorboats and snowmobiles. More important measurement equipment includes: a weather station with the basic measuring instruments (the measurements conducted since 1975); automatic weather stations (with the measurements taken at any intervals); limnigraphs and loggers installed in the selected watercourses (measurements of water levels, flow rates and the selected physicochemical features of water since 1975); a system of ablation poles installed on the glaciers; ice drills; loggers for measuring ground temperatures and ice temperatures, and others. The extension of the station in 2007 enabled larger groups of scientists to work and conduct research. The fact that both the living and laboratory space has been enlarged is especially important, as the station is often visited by scientists from all over the world. As a result, the extension will make it possible to intensify current international contacts, as well as start new co-operation projects in the Kaffiøyra region.

Soils Environmental management Atmosphere
10. Geographical environment conditions and its changes in the polar and subpolar regions (GeograPOLARUMCSphical environment conditions and its changes in the polar and subpolar regions ())

The study includes comprehensive study of the geographical environment in the area of Polar Station of Maria Curie-Skłodowska University in Calypsobyen (NW part of Wedel Jarlsberg Land, Svalbard). Currently, studies have been carried out within research projects: - Dynamics of matter circulation in the polar catchment are a subject to deglaciation processes (Scottelva, Spitsbergen) (DYNACAT) - Morphogenetic and morphodynamics conditions of development of the coast of the NW part of Wedel Jarlsberg Land (Spitsbergen) in the late Vistulian and Holocene (MORCOAST) - Mechanisms of fluvial transport and sediment supply to Arctic river channels with various hydrological regimes (SW Spitsbergen) (ARCTFLUX)

Geology Soils Environmental management
11. Alaska Soil Survey

More information about the following long-term observing activity will be available in due course. • Soil survey program description: http://www.ak.nrcs.usda.gov/soils/index.html • Soil climate survey program description: http://www.ak.nrcs.usda.gov/soils/SoilClimateSites/SoilClimateSites.html • For information and data, contact: Rick McClure, richard.mcclure@ak.usda.gov

Soils Ecosystems
12. Greenland permafrost monitoring

The purpose of the project is to combine the Danish Meteorological Institute’ HIRHAM climate model and permafrost research. This collaboration between the two fields is expected to result in a prognosis of changes in the permafrost distribution in Western Greenland (maritime Arctic climate) and Alaska (continental Arctic climate) to the year 2050. Network type: permafrost

Soils Ecosystems
13. Sweden National Soil Inventory (RIS-MI) (RIS-MI)

Since 1962, the soil inventory (RIS-MI) and the national forest inventory (RIS-RT) have had a common field organization. The soil inventory investigates soils and collects soil samples for laboratory analysis. It includes several soil variables, e.g. soil type and soil classification, stone and boulder abundance, water relations, and soil chemistry. Simultaneously to the soil inventory, RIS–MI samples the field layer vegetation.

Soils