ENVINET Activities Catalog

ENVINET Activities Catalog

ENVINET (European network for arctic-alpine multidiciplanary environmental research) is a research infrastructure network focusing on multidisciplinary environmental research in Europe. The network involves representatives from 18 environmental research infrastructures from the European Alps to the Arctic, representatives of their users and representatives from relevant international organizations and networks. The participating infrastructures cover a broad range of environmental sciences primarily within atmospheric physics and chemistry as well as marine and terrestrial biology.

The ENVINET project directory covers data and observation activities at these stations.

Other catalogs through this service are AMAP, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 81 - 100 of 383 Next
81. Radiometric studies of natural surfaces at Ny-Aalesund by means of field survey and multispectral satellite data

The main goal of this research project is to complete the collection of snow/ice field data and to improve the organization of snow/ice spectral signatures, and structural data, along with ancillary information in the existing archive.

Geology Mapping radiometric studies remote-sensing Spatial trends Climate change Ice Arctic Temporal trends spectral reflectance
82. Interactions among infauna, microorganisms and polycyclic aromatic hydrocarbons in marine sediments

Dose-response experiments using 5 different sediment concentrations of fluoranthene (Flu) and pyrene (Py) respectively. Measuring radioactive marked Flu and Py in brittlestars and polychaetes and microbial degradation of Flu and Py in sediment. Also growth rate of brittlestars and polychaetes and determination of regenerationtime of brittlestar-arms.

Biological effects Biology PAHs microorganisms Petroleum hydrocarbons infauna Exposure Sediments
83. Effects of storage lipids on the repoductive potential of the copepod Calanus Finmarchicus in Gullmarsfjorden, Sweden

To be completed.

Biology Reproduction
84. Systems of intraspecies communication in Meganyctiphanes norvegica and construction of meter system for low light in deep water

To be completed.

Biology
85. Bioactivation of polyaromatic hydrocarbons (PAHs) in crab (Cancer pagurus), shrimps (Crangon spp and Palaemon spp) and a polycheate (Neries pelagica).

To be completed.

Biological effects Biology PAHs
86. An experimental study on stable carbon and nitrogen isotope fractionation by Meganyctiphanes norvegica - the influence of food source, assimilation efficiency and growth rate

The aim of our visit to Kristineberg was to study the stable carbon and nitrogen isotope fractionation of Meganyctiphanes norvegica in response to different food supply, and to evaluate the importance of physiological processes (assimilation and growth) in generating the new stable isotope pattern. This calibration will contribute to the evaluation of the stable isotope method as an approach to the study of food sources of animals in the field.

food Biology Meganyctiphanes norvegica krill Diet
87. Histology and immunocytology of the ectodermal nervous system in echinoderms

To be completed.

Biology
88. Minch Habitat Mapping

To survey and characterise the occurrence of biogenic reefs of cold-water corals in the Minch: • Conduct side scan sonar survey of ridge feature east of Mingulay. • Ground-truth the sonar results with targeted camera / ROV deployments. • Repeat this survey at other locations to examine how widespread this habitat may be in the Minch. • Sample live coral and rubble zones with minimally invasive video-directed grab sampling. • Report on findings and present summary data in a GIS compatible format (ArcView).

Geology Hydrography Mapping Spatial trends GIS Sediments
89. Microalgae as Cell Factories for Chemical and Biochemical Products

• To survey and document the state of the art in microalgal technology • To examine legislative and regulatory matters connected with the field • To bring together the various information on European algal collections into a single on-line portal • To develop the on-line database into a comprehensive tool for dissemination of knowledge pertaining to microalgae and microalgal research • To investigate current barriers to the use of microalgae and identify possible future uses of microalgae and microalgal technology • To help steer the direction of European research • To carry out technology transfer to the end users within the network, with measurable benefits for efficiency • To ensure the strategy involves dissemination to end-users outside the network partners • To ensure network cohesion and good communication between the partners • To develop an ongoing ‘virtual institute’ model and lay the groundwork for future RTD projects

Biological effects Food webs
90. Arctic-subarctic Ocean Flux-Array for European Climate: West

-To measure the variability of the dense water and freshwater fluxes between the Arctic Ocean and the North Atlantic in the critical region off Southeast Greenland with a view to understanding and predicting their response to climate forcing -To construct an autonomous, bottom mounted profiling device capable of taking key water profile measurements.

Marine Technology Climate variability Climate change Ocean currents Temporal trends
91. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
92. On thin Ice

On thin Ice

Biology Biodiversity
93. Mitigation of effects of high power sonars on marine mammals

• This proposal is to develop a reliable method for forecasting the occurrence of marine mammals based on time of year, location and oceanographic conditions. • The work will exploit components of existing NERC-funded research within the core science programmes of SMRU and SAMS. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the Sea of the Hebrides and the Minch. • Historical data on marine mammal sightings will be supported by an observational programme, including the use of acoustics and satellite and radio tags. • Simultaneous oceanographic data will be collected during the above programme, supplementing the extensive SAMS archive of time-series from this area. • A proposed operational monitoring network in the southern Minch will be adapted to add acoustic observations to the planned suite of physical and chemical sensors. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The validity of this relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.

Biological effects Fish Geophysics Marine mammals
94. ESAC I and II: Experimental Studies of Atmospheric Changes, 1st and 2nd phase

The main objectives of ESAC II are the following: (1) Extend and improve the important existing Belgian contribution in atmospheric research started in the 50s, recognized internationally. (2) Investigate the chemistry of the atmosphere, to detect and understand its evolution, mainly with experimental means. Special attention will be paid to the evolution of the ozone layer and chemical species and processes with an impact on climate changes. (3) Support the Belgian policies and decisions regarding the Amendments to: - the Montreal Protocol on Substances that deplete the Ozone Layer; - the Kyoto Protocol on Greenhouse Gases (GHG) emissions.

Atmospheric processes Sources Ozone UV radiation Climate variability Belgian contribution in atmospheric research Spatial trends Pollution sources Montreal & Kyoto Protocols Climate change Modelling Emissions Atmosphere Temporal trends
95. The prediction of marine mammal aggregations by reference to oceanographic observables in the seas to the north and west of the Hebrides

• There is a clear need to predict the occurrence of marine mammals in order to minimise the possible harmful impact of military sonar activities, some of which have recently received extensive public media exposure. • No military or civilian method currently exists to predict the possibility of encountering marine mammals. • The proposed work will exploit components of existing NERC-funded research within the core science programmes of SAMS and SMRU to develop a predictive tool that will link marine mammal occurrence to classical oceanographic observables. • Pre-existing data on marine mammal aggregations lead us to believe that the proposed method has a high probability of success. • The main study area will be the open seas to the north and west of the Hebrides. • Existing NERC-funded SAMS cruises in this area will collect oceanographic data, supplementing remotely sensed imagery and the extensive SAMS archive of time-series from this area. • A key element in achieving the proposal objective (and in furthering NERC science objectives) will be the recruitment of SMRU observers and equipment to SAMS cruise complements so that marine mammal sightings may be linked directly to the oceanographic research programme. • Additional SMRU deployments on board vessels of opportunity will increase the density of the observational programme. • The suitability of SOSUS acoustic data as an indicator of marine mammal presence will be investigated. • The datasets will be analysed using a variety of statistical techniques to yield a practical relationship between observables (local oceanographic conditions, season, location) and species abundance. • The value of the relationship as an operational tool will be tested in a variety of scenarios. • The work is expected to run from the summer of 2002 to the summer of 2005.

Biological effects Fish Geophysics Marine mammals
96. Ice ridging information for decision making in shipping operations

IRIS brings together several EU partners to investigate methods to estimate sea ice ridging severity from satellite imagery and assess the impact of these ridges on icebreaker transit times, particularly in the Baltic Sea. The consortium is largely Finnish and is co-ordinated by the Helsinki Technical University. SAMS’ role is to study statistical properties of synthetic aperture radar (SAR) images and relate these to ridge parameters.

Shipping Ice Ice sheets Arctic
97. Mobilisation and Consentration of Natural and Anthropogenic nuclides in a high Arctic Fjord

This year the Norwegian Radiation Protection Authority hope to conduct marine biota, water and terrestrial sampling in the area of Kongsfjord. Such samples as are obtained will be analysed for a suite of natural and anthropogenic radionuclides, the resulting data contributing towards NRPA’s marine and terrestrial monitoring program and research efforts in the area of Arctic radioecology. These research efforts are currently focused on two areas: Arctcic marine radioecology and Arctic terrestrial radioecology. The marine component of this years field work will provide samples allowing for the study of variability in the uptake of radioactive marine contamination in a High Arctic fjord. Samples will also be taken, where possible, of such species as constitute prey for seabirds in the area. The terrestrial component shall be concerned with factors pertaining to the clarification of the situation regarding elevated levels of radionuclides at certain sites within the Kongsfjord area, most pertinent being those associated with detrital accretions close to bird colonies.

Radioactivity Long-range transport
98. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
99. Greenland Arctic Shelf Ice and Climate Experiment

-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores

Climate variability Climate Sea ice Environmental management Climate change Modelling Ice Arctic Ice cores Temporal trends
100. Sea Ice Thickness Observation System

SITHOS (Sea Ice Thickness Observation System) is also a three-year EU Framework 5 project. The Nansen Environmental Remote Sensing Centre (NERSC) will co-ordinate six institutions in the development of an integrated system for measuring sea ice thickness in the Arctic Ocean. Several approaches for obtaining ice thickness will be used, including novel flexural-wave methods, remote sensing and electromagnetic induction techniques. SAMS’ role is to provide data from UK submarines and aid in the development of the novel tiltmeter-based instruments. Data will be used to improve sea ice models and validate the new CRYOSAT satellite sensors. The resulting synoptic thickness monitoring network will be used to investigate the postulated dramatic thinning in the Arctic Ocean sea ice cover as a result of climate change.

Shipping Ice Ice sheets Arctic