ENVINET Activities Catalog

ENVINET Activities Catalog

ENVINET (European network for arctic-alpine multidiciplanary environmental research) is a research infrastructure network focusing on multidisciplinary environmental research in Europe. The network involves representatives from 18 environmental research infrastructures from the European Alps to the Arctic, representatives of their users and representatives from relevant international organizations and networks. The participating infrastructures cover a broad range of environmental sciences primarily within atmospheric physics and chemistry as well as marine and terrestrial biology.

The ENVINET project directory covers data and observation activities at these stations.

Other catalogs through this service are AMAP, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 141 - 144 of 144
141. Effects of UV-radiation on macroalgae of the Kongsfjorden

Photoinhibition of photosynthesis by UV radiation, the formation of UV-screening pigments, DNA damage by UV radiation as well as DNA repair mechanisms will be determined in marine macroalgae of the Kongsfjord. Moreover, algae from different water depths will be transplanted by divers into areas with opposite light climate or covered by UV-screening filters and their physiological reactions tested. Additionally, the susceptability of the unicellular algal spores to UV-radiation will be tested. The results will allow insights into the effect of UV and photosynthetically active radiation on the zonation of macrocalgae and on the structure of phytobenthic communities. The data will be used to model the effects of increased of UV-radiation due to stratospheric ozone depletion on the Kongsfjord phytobenthic communities.

Biological effects Ozone Biology DNA UV radiation Phytobenthic communities Marine macroalgae Exposure Arctic Algae
142. Negative effects of UV radiation on organisms

Due to its high energy, UV radiation can induce severe damage at the molecular and cellular level. On the molecular level proteins and lipids, as well as nucleic acids are particularly affected. Conformation changes of certain proteins involved in photosynthesis, such as the reaction center protein (D1) of photosystem II or the CO2 fixing enzyme in the Calvin cycle (RuBisCo) lead to an inhibition of photosynthesis, and consequently to a decrease in biomass production. This might shift certain algal species into deeper waters, not reached by UV radiation. The aim of the studies is to demonstrate how strong an increase of UV radiation due to stratospheric ozone depletion will influence the depth distribution and biomass production of macroalgae, and which molecules and processes are most severely affected. Moreover, it will be studied, which stage in the life cycle of the individual species is most sensitive to UV radiation as it will be this particular stage, which in the end determines the upper distribution limit of a certain species on the shore.

Biology Marine algae UV radiation Seaweeds Environmental management Climate change Biodiversity Ecosystems
143. Dynamics in a subarctic dwarfshrub community

To evaluate some factors controlling the relative performance of the four dominating species in this community (i.e. the dediduous Vaccinium uliginosum and V. myrtillus and the evergreen V. vitis-idaea and Empetrum hermaphroditum). The study includes removal of species and nutrient additions. Responses are studied in permenent plots.

144. Leaf unfolding and leaf fall phenology in the mountain birch

Relating budburst and leaf absicssion in the mountain birch to climatic conditions.

Biology Climate