ENVINET Activities Catalog

ENVINET Activities Catalog

ENVINET (European network for arctic-alpine multidiciplanary environmental research) is a research infrastructure network focusing on multidisciplinary environmental research in Europe. The network involves representatives from 18 environmental research infrastructures from the European Alps to the Arctic, representatives of their users and representatives from relevant international organizations and networks. The participating infrastructures cover a broad range of environmental sciences primarily within atmospheric physics and chemistry as well as marine and terrestrial biology.

The ENVINET project directory covers data and observation activities at these stations.

Other catalogs through this service are AMAP, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 11 of 11
1. Ice caves in order to reconstruct Holocene glacier recessions

The objective of the project was the investigation of englacial melt water channels of Svalbard glaciers in order to find in situ organic material within glacier caves. Specified organic material found beneath glaciers was meant for radiocarbon dating and creation of reliable geochronologies of glacier recessions with considerable smaller glacier termini than present on Svalbard. First radiocarbon dating results ever from organic material found under a glacier’s bottom of glacier Longyearbreen will be published this year. The different moss species ranging from Tomentypnum nitens, Sanionia uncinata, Distichium spp., Syntrichia ruralis gave ages between 1900 and 1100 cal yr BP (Humlum et al., 2004).

Glaciers Geology Climate variability Ice caves Radionuclides Ice
2. ATMospheric Fluxes from Arctic Snow Surfaces - ATMS

The central objectives of the proposed ATMAS project are:  to quantify the photo-chemically triggered NOx and HONO re-emission fluxes from permanently and seasonally snow-covered surfaces in the Arctic near Ny-Ålesund,  to quantify the sources of NO3 in these snow-covered surfaces. In detail, the following scientific objectives of ATMAS can be distinguished: 1. to quantify atmospheric gradient fluxes of HNO3, HONO, particulate nitrogen compounds, and nitrogen in precipitation (snow and rain) above snow surfaces; 2. to quantify the emission of NOx and HONO from the snow pack as atmospheric gradient fluxes 3. to formulate an influx-outflow relationship that can be used in dependence on the snow type for (photo-)chemical atmospheric process models. The results of this research may be expanded to a regional (European) or global scale, to suggest how the NOx and HONO re-emission process and its consequences can be included into regional emission, dispersion and deposition models used in Europe.

Atmospheric processes Ozone gaseous ammonia nitrogen bio-geochemical cycle Pollution sources Climate change tropospheric boundary layer nitrogen oxides Ice Emissions SNOW and SNOWPACK Arctic Data management photochemical production Atmosphere Human health
3. Hydrology and water currents in the inner part of Kongsfjord in front of Kongsbreen Glacier

The aim of this project is to study the physical oceanography of the sea in the area where Kongsbreen glacier get in touch with the sea in the inner part of Kongsfjord. In particular the project aims:  to characterise temperature and salinity of water masses in the inner part of Kongsfjord close to Kongsbreen Glacier  to characterise major fresh water outflow from Kongsbreen glaciers to the sea in the inner part of the fiord  to collect time series if seawater currents in-out from the inner part, temperature and salinity patterns for one year from summer 2001 to summer 2002.  to collect a one year time series of sea level changes by an automatic self recording depth gauges deployed close to the base.

Glaciers Kongsfjord Hydrography Water currents Hydrology sea level change salinity Sea ice Climate change Ice Oceanography Arctic temperature Ocean currents Kongsbreen
4. Relative importance of different sources of particulate matter in the Kongsfjorden environment

The general objective of this research concerns the quantitative and qualitative study of particulate matter retained in natural (sea-ice and sediment) and artificial (sediment traps) traps in order to determine the main origin (autochtonous and allochtonous) and the relative importance of different fractions of particulate matter and to follow their fate in the environment. To quantify the autochtonous origin of particulate matter, primary production, nutrient uptake, biomass distribution, phytoplankton community structure and fluxes in the first levels of the trophic chain will be investigated. Studies will be conducted in the sea-ice environment and in the water column and compared to the particle fluxes measured both in the water, using sediment traps and in the sediment, by radiometric chronology, in order to estimate the different contribution of these habitats to carbon export to the bottom. The zooplankton will be identified and counted and primary production, nutrient uptake and phytoplankton dynamics will be related to hydrological structure and nutrient availability in the environment. The Kongsfjord results particularly suitable for the main objective of this research as it is influenced by important inputs of both atmospheric (eolic and meteroric) and glacial origin and is characterised by a complex hydrological situation which may promote autochtonous productive processes, thus determining important particulate fluxes.

athmospheric carbon dioxide Biological effects Biology Arctic haze Hydrography inorganic and organic nutrients particulate Sea ice Ice Oceanography Biodiversity Arctic Ice cores Data management Atmosphere Ocean currents phytoplankton sediment radiometric chronology zooplankton
5. Radiometric studies of natural surfaces at Ny-Aalesund by means of field survey and multispectral satellite data

The main goal of this research project is to complete the collection of snow/ice field data and to improve the organization of snow/ice spectral signatures, and structural data, along with ancillary information in the existing archive.

Geology Mapping radiometric studies remote-sensing Spatial trends Climate change Ice Arctic Temporal trends spectral reflectance
6. Ice ridging information for decision making in shipping operations

IRIS brings together several EU partners to investigate methods to estimate sea ice ridging severity from satellite imagery and assess the impact of these ridges on icebreaker transit times, particularly in the Baltic Sea. The consortium is largely Finnish and is co-ordinated by the Helsinki Technical University. SAMS’ role is to study statistical properties of synthetic aperture radar (SAR) images and relate these to ridge parameters.

Shipping Ice Ice sheets Arctic
7. Greenland Arctic Shelf Ice and Climate Experiment

-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores

Climate variability Climate Sea ice Environmental management Climate change Modelling Ice Arctic Ice cores Temporal trends
8. Sea Ice Thickness Observation System

SITHOS (Sea Ice Thickness Observation System) is also a three-year EU Framework 5 project. The Nansen Environmental Remote Sensing Centre (NERSC) will co-ordinate six institutions in the development of an integrated system for measuring sea ice thickness in the Arctic Ocean. Several approaches for obtaining ice thickness will be used, including novel flexural-wave methods, remote sensing and electromagnetic induction techniques. SAMS’ role is to provide data from UK submarines and aid in the development of the novel tiltmeter-based instruments. Data will be used to improve sea ice models and validate the new CRYOSAT satellite sensors. The resulting synoptic thickness monitoring network will be used to investigate the postulated dramatic thinning in the Arctic Ocean sea ice cover as a result of climate change.

Shipping Ice Ice sheets Arctic
9. Optical properties, structure, and thickness of sea ice in Kongsfjorden

Study of the energy exchange between atmosphere, sea ice and ocean during freezing and melting conditions; within that, measurements of solar radiation (visible and UV) and optical properties, snow and sea ice characteristics, vertical heat and salt fluxes, oceanographic parameters.

UV radiation Geophysics Climate variability Climate remote sensing Sea ice Climate change Modelling Ice Oceanography Arctic Ice cores Atmosphere Ocean currents optical properties
10. The surface energy budget and its impact on superimposed ice formation (SEBISUP)

During the spring/summer transition, sea ice and snow properties change considerably in response to warming and the eventual reversal of temperature gradients within the snow and ice. Snow melt water percolates down towards the colder snow/ice interface, where it refreezes to form superimposed ice. On sea ice this process occurs probably longer and more intensive than on land, because throughout the summer the ice and underlying seawater is always colder than the snow. In Antarctica superimposed ice may actually form layers of some decimeters in thickness. The objective of this study is to investigate the main processes and boundary conditions for superimposed ice formation, in recognition of its importance for Antarctic sea ice, and its possible importance for Arctic sea ice in case of environmental changes due to future climate change. This will be performed by means of modeling as well as by combined measurements of the temporal evolution of snow and ice properties and the energy budget.

Snow and ice properties Sea ice Climate change Modelling Ice Ice sheets Arctic Ice cores Superimposed ice formation

Estimate the vertical distribution of glacierice along the west coast of Svalbard during the last iceage.

Glaciers Ice