ENVINET Activities Catalog

ENVINET Activities Catalog

ENVINET (European network for arctic-alpine multidiciplanary environmental research) is a research infrastructure network focusing on multidisciplinary environmental research in Europe. The network involves representatives from 18 environmental research infrastructures from the European Alps to the Arctic, representatives of their users and representatives from relevant international organizations and networks. The participating infrastructures cover a broad range of environmental sciences primarily within atmospheric physics and chemistry as well as marine and terrestrial biology.

The ENVINET project directory covers data and observation activities at these stations.

Other catalogs through this service are AMAP, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 13 of 13
1. Arctic and Alpine Stream Ecosystem Research

The project, Arctic and Alpine Stream Ecosystem Research (AASER), started within EU’s Climate & Environment Programme and now continues with national funding, primarily Norway, Italy and Austria. The objective is to study dynamics and processes in rivers systems in Arctic and Alpine regions. Emphasis is given to the relationships between benthic invertebrates and environmental variables, especially in glacier-fed systems and in relation to climate change scenarios. On Svalbard research is concentrated around Ny Ålesund, particularly Bayelva and Londonelva. In 2004 the focus will be on the use to stable isotopes to detect transfer processes within and between ecosystems.

Glaciers Biology Catchment studies Spatial trends Climate change Biodiversity Arctic Food webs Temporal trends Ecosystems
2. Ice caves in order to reconstruct Holocene glacier recessions

The objective of the project was the investigation of englacial melt water channels of Svalbard glaciers in order to find in situ organic material within glacier caves. Specified organic material found beneath glaciers was meant for radiocarbon dating and creation of reliable geochronologies of glacier recessions with considerable smaller glacier termini than present on Svalbard. First radiocarbon dating results ever from organic material found under a glacier’s bottom of glacier Longyearbreen will be published this year. The different moss species ranging from Tomentypnum nitens, Sanionia uncinata, Distichium spp., Syntrichia ruralis gave ages between 1900 and 1100 cal yr BP (Humlum et al., 2004).

Glaciers Geology Climate variability Ice caves Radionuclides Ice
3. Englacial draining on Kongsvegen

Englacial draining on Kongsvegen

Glaciers Climate change
4. Hydrology and water currents in the inner part of Kongsfjord in front of Kongsbreen Glacier

The aim of this project is to study the physical oceanography of the sea in the area where Kongsbreen glacier get in touch with the sea in the inner part of Kongsfjord. In particular the project aims:  to characterise temperature and salinity of water masses in the inner part of Kongsfjord close to Kongsbreen Glacier  to characterise major fresh water outflow from Kongsbreen glaciers to the sea in the inner part of the fiord  to collect time series if seawater currents in-out from the inner part, temperature and salinity patterns for one year from summer 2001 to summer 2002.  to collect a one year time series of sea level changes by an automatic self recording depth gauges deployed close to the base.

Glaciers Kongsfjord Hydrography Water currents Hydrology sea level change salinity Sea ice Climate change Ice Oceanography Arctic temperature Ocean currents Kongsbreen
5. Role of organic and inorganic particles in the mobility of radionuclides in the Kongsfjord-Krossfjord system (MORAK)

The aims of the project are: - to evaluate the fluxes of radionuclides in the water column and their accumulation in the sediment, on a short-time scale; - to determine the C/N and delta13C-delta15N ratios in suspended and sedimentary matter, and test their use as tracers of origin, composition and transformation pathways of organic particles. The selected study area is the Kongsfjord-Krossfjord system, Svalbard, considered as representative test-site for studying processes occurring in Arctic fjords. The focus of the project will be on the processes occurring at the glacier-sea interface, where enhanced lithogenic and biogenic particle fluxes are reported in summer. Specific methods will be used to trace the particle sources. The rate of accumulation-resuspension processes will also be investigated from the inner fjord to the outer continental shelf.

Glaciers Hydrography Climate Sea ice Contaminant transport Radionuclides Oceanography Arctic Sediments Ocean currents
6. Mass balance Study Midre Lovenbreen

Please contacty dr Jemma Wadham or Andy Wright, University of Bristol UK

7. The Provenance and Fate of Nitrogen in Arctic Glacial Meltwaters: An Isotopic Approach.

Based upon research previously undertaken at Sheffield University, nutrients released from High Arctic glaciers during the summer ablation season are shown to rarely be in balance with bulk inputs deposited on the glacier surface as winter accumulation. Nutrient budgets suggest glaciers to release an excess of nitrate relative to annual bulk deposition, whilst up to 40% of the Ammonium deposited on the glacier surface appears to be sequestered from the inorganic budget (Hodson., in prep). Contrary to popular understanding, such an imbalance would suggest glaciers to be agents of nutrient storage, release and utilisation. In conjunction with a range of recent research (Sharp et.al, 1999., Skidmore et.al, 2000) this may potentially demonstrate high Arctic glaciers to be dynamic biological systems supporting a plethora of microbial life, rather than biologically inert cryospheric entities as so widely perceived in much of the research literature. Ammonium and Nitrate are nutrients of key importance not only to the maintenance of microbial life in such hostile environments, but also to the primary productivity of ice-marginal freshwater and marine ecosystems. However, as yet, their dynamics have proved difficult to explain. Field research undertaken during summer 2002 used natural isotopes to fingerprint sources and sinks of nutrients within the glacial system, thereby enabling a better understanding of biogeochemical cycling within the glacial environment. Whilst analysis of isotopic samples from this field season is still ongoing, new areas of research have been highlighted. The significance of organic nutrients in biogeochemical cycling has largely been regarded as insignificant, especially with regard to glacier geochemistry (reference). However, large fluxes of organic carbon have been observed emanating from the subglacial drainage of glacier Midre-Lovenbreen (Wynn, unpublished Data) and Dissolved Organic Nitrogen (DON) is now known to represent upto 40-50% of annual nitrogen inputs in glacier snowpacks (Hodson, in prep). Furthermore, bacteria, cysts and algae present within small supraglacial melt pools known as ‘cryoconite holes’, hold the potential to utilise inorganic nutrients and retain them in the organic phase. Consequently, omitting the role of organic nutrients from glacial biogeochemical studies allows only a limited understanding of the chemical and biological interactions occurring within Arctic glaciers. A field study addressing the significance of dissolved organic nutrients within glacial systems is to be undertaken during summer 2003. A new method is currently being investigated which will allow the concentration and subsequent isotopic analysis of dissolved organic nutrients retained on ion exchange resins. Use of environmental isotopes in conjunction with major ion chemistry will help determine the provenance, fate and bioavailability of organic nutrients within the glacial system. Lysimeters inserted into the snowpack will enable the release of organic nutrients into the glacier to be continuously monitored, allowing subsequent changes in meltwater isotopic signatures to be studied relative to this. Particular emphasis shall be given to Nutrient cycling within cryoconite holes and fluxes of organic matter emanating from the subglacial drainage as these represent two possible sites of organic/inorganic interaction. Fieldwork is to be undertaken on Midre-Lovenbreen, Svalbard, a polythermal glacier well known and studied by the author. Initial sample processing shall be accomplished in the laboratory facilities provided in Ny-Alesund, whilst subsequent isotopic analysis is to be undertaken at the British Geological Survey in Nottingham.

8. Phosphorus Cycling in the Cryosphere

This project will construct detailed phosphorus budgets for polar catchments occupied by glaciers and freshwater systems undergoing rapid response to climate warming. These are Midre Lovenbreen, Svalbard; Jebsen Creek, Signy Island (maritime Antarctic) and Storglaciaren, northern Sweden. The relationship between meltwater production, pathway and phosphorus liberation from glacial sediments will be examined closely. Emphasis will be given to phosphorus sorption dynamics in turbid glacial streams and their receiving waters (fjords and lakes).

Glaciers Catchment studies Phosphorus Climate change Arctic Geochemistry Ecosystems
9. Control And Distribution of Inorganic Chemical Species And Microbes Within Glacier Ice

To determine where different types of impurities (primarily specific inorganic chemical species and microbes) are located on a microspopic scale within the ice and what controls their distribution.

10. Quantify the Contribution of Svalbard Glaciers to the Observed Sea Level Rise Over the Past Sixty Years Using Archived Aerial Surveys.

Use of digital stereo photogrammetry to spatially quantify through time the loss of ice mass on Midre Lovenbreen, Austre Broggerbreen and Slakbreen. Pairs of stereo areial photographs from each glacier will be processed to create digital elevation models from at least three periods over the last 30-50 years, and differencing them will give a highly accurate view of glacier retreat through time which can be linked through models to climate change analysis.


Estimate the vertical distribution of glacierice along the west coast of Svalbard during the last iceage.

Glaciers Ice
12. Mass balance in Ny-Ålesund

Mass balance measurements with use of snow-radar on glaciers and snow i the Ny-Ålesund area.

Glaciers Climate change
13. Role of organic and inorganic particles in the mobility of radionuclides in the Kongsfjord-Krossfjord system

The selected study area in Svalbard is consideres a representative test-site for studying processes occurring in Arctic fjords. The focus of the project is on the processes occurring at the glacier-sea interface, where enhanced lithogenic and biogenic particle fluxes are reported in summer.Specific methods are used to trace the particle sources. The rate of accumulation-resuspenion precesses is also investigated from the inner fjord to the outer continental shelf.

Glaciers Sea ice Contaminant transport Radionuclides