ENVINET Activities Catalog

ENVINET Activities Catalog

ENVINET (European network for arctic-alpine multidiciplanary environmental research) is a research infrastructure network focusing on multidisciplinary environmental research in Europe. The network involves representatives from 18 environmental research infrastructures from the European Alps to the Arctic, representatives of their users and representatives from relevant international organizations and networks. The participating infrastructures cover a broad range of environmental sciences primarily within atmospheric physics and chemistry as well as marine and terrestrial biology.

The ENVINET project directory covers data and observation activities at these stations.

Other catalogs through this service are AMAP, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 31 Next
1. INTERACTIONS

Important progress has been made in recent decades to describe and understand how arctic terrestrial vertebrate interact, especially concerning predator-prey interactions. Indirect interactions between different prey species modulated by shared predators (e.g. Arctic fox) are believed to have important impacts on the structure and/or dynamics of some communities. Yet, our understanding of these types of interactions is still fragmentary. To fill that gap, we will build on ongoing projects exploring related questions in Canada (Marie-Andrée Giroux, Nicolas Lecomte, Joël Bêty) and Greenland (Olivier Gilg, Niels M. Schmidt), while taking advantage of existing networks (ADSN in North America and “Interactions” program in Greenland and Eurasia). The aim of the project is to promote the implementation of several common protocols that will (1) improve each collaborator’s knowledge at the site level and, more importantly, that will (2) be merged across sites and years to improve our understanding of the functioning and the influence of indirect interactions on arctic vertebrate communities in general.

Five types of data have been identified (by the 5 initiators of the project already mentioned above) as being mandatories to answer questions related to this topic. These data sets will be collected using 5 specific protocols described in the following chapters:

  1. Monitor predation pressure using artificial nests
  2. Monitor real predation pressure on Calidris nests using Tiny Tags
  3. Observations of predators and lemmings (3b: fox scats DNA barcoding)
  4. Assessing lemming (or “rodent”) relative abundance using different methods
  5. Assessing “herbivores” (excl. rodents) relative abundance using “faeces transects”
Arctic Biodiversity Biological effects Biology Climate change Diet Ecosystems Environmental management Food webs Modelling Populations Reproduction Spatial trends Temporal trends Terrestrial mammals
2. LAPBIAT-Lapland Atmosphere-Biosphere facility

The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.

Arctic Atmosphere Atmospheric processes Biodiversity Biological effects Biology Climate Climate change Climate variability Data management Ecosystems Emissions Environmental management Exposure Geophysics Human health Local pollution Long-range transport Modelling ozone Persistent organic pollutants (POPs) Populations Reindeer Spatial trends Temporal trends UV radiation
3. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
4. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
5. EuroClim

Mapping and monitoring of the snow cover with use of satellitte born optical instruments for (1) direct use of observations of climate change and (2) use of observations in climate modelling. Measurements of the snows spectral reflectance and other physical properties.

Mapping Climate variability Climate Environmental management Climate change Modelling
6. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
7. Algal Toxins; their Accumulation and Loss in commercially Important Shellfish, including larval Mortality and Appraisal of Normal sampling procedures.

-Development of methods to enhance the rate of toxin depuration ( detoxification), especially in shellfish species of high economic value and prolonged retention e.g., King Scallops -Understanding the reaction products and metabolic transformations of toxins in shellfish tissues. -Determine the relationship between algal population dynamics ( including free cell and encysted stages ) to seasonal and spatial patterns of toxicity in shellfish populations. -Assess the effects of harmful algae on the various stages in the life history of shellfish ( Larvae, Spat, Adults ). -Investigate sampling frequencies and protocols ( live shellfish sampling ).

Biology Fish Environmental management Contaminant transport Food webs Diet Temporal trends Human health Human intake
8. Greenland Arctic Shelf Ice and Climate Experiment

-Quantify changes in ice dynamics and characteristics resulting from the switch in AO phase -Establish a climate record for the region north of Greenland through the retrieval and analysis of sediment cores -Improve an existing dynamic-thermodynamic sea ice model, focusing on the heavily deformed ice common in the region -Relate the region-specific changes which have occurred to the larger-scale Arctic variablity pattern -Place the recent ice and climate variability for this critical region into the context of long term climate record, as reconstructed from sediment cores

Climate variability Climate Sea ice Environmental management Climate change Modelling Ice Arctic Ice cores Temporal trends
9. Reducing the environmental impact of sea cage fish farming through the cultivation of seaweeds

Although the most visible effect of fish cage aquaculture is the output of particulate organic waste, 80% of the total nutrient losses from fish farming are plant-available as potentially eutrophicating substances. This project will assess the ability of commercially important seaweeds, cultivated in the immediate vicinity of caged fish, to reduce the impact of such nutrient releases. The algae cultivated in high nutrient sites will be tested as a food source for humans and for cultivated shellfish, and a model of the distribution of dissolved contaminants from sea-cage fish farms will be developed to predict the impact of introducing algal cultivation at any site.

Pathways Biological effects Fish Spatial trends Environmental management Contaminant transport Food webs Sediments Pesticides Temporal trends Ecosystems
10. Environmental sensitivity of cold water corals

Distribution • What is the current distribution of coral colonies in the North Sea? • Where are coral colonies located on the structures? • Do any colonies show evidence of exposure to drill cuttings? Monitoring & Environmental Recording • What hydrodynamic regime and levels of suspended particulate material are coral colonies exposed to? • Does the coral skeleton retain an archive of any past contamination? • Does skeletal growth vary over time and does this correlate with any past contamination? • How variable is the rate of coral growth and does this correlate with any environmental variables? Environmental Sensitivity • What effect does increased sediment load have on coral behaviour and physiology? • What effect does exposure to discharges (e.g. cuttings and produced water) have on coral behaviour and physiology? • Are such exposures realistic in the field?

Shelf seas Biological effects Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Oceanography Biodiversity Local pollution Ecosystems
11. The Effects of Turbidity on Marine Fishes

(a) To assemble and further develop an integrative methodology for in situ evaluation of the effects of turbidity and hypoxia on fish physiological and/or behavioural performance. (b) To determine experimentally the threshold values beyond which oxygen and turbidity levels are liable to alter fish physiological and/or behavioural performance. (c) To integrate the results obtained in a conceptual and predictive model. Main expected achievements: [1] establishment of a link between laboratory studies, studies in mesocosms and field studies, using the most advanced techniques for monitoring behaviour in various environmental conditions. [2] an understanding of the impact of water turbidity and oxygenation on three major components of the behavioural repertoire of fish: habitat selection, predator-prey interactions and schooling-aggregation. [3] Predictive ability for the effect of the environmental variables studied on ecologically relevant behaviour.

Shelf seas Biological effects Fish Environmental management Local pollution Food webs
12. HIMOM

HIMOM will aim to provide a system of methods, the so-called Hierarchical Monitoring Methods (or HMM), to determine system status and changes which are expressed by biological and physical variations within inter-tidal areas. The HMM will aim to provide a management strategy tailored to the needs of End User involved in activities relating to the sustainable development of tidal flat areas around Europe. The HMM system will represent a hierarchical suite of activities, ranging from simple ground measurements of biota and physical characteristics to remote sensing of spectral reflectance properties for the analysis of basin scale systems.

Biology Environmental management Biodiversity Ecosystems
13. Helgoland Foodweb Project

To study the organisms involved in phytoplankton succession and the Key factors involved. This includes Bacteria-Algae, Algae-zooplankton and Zooplankton-Fish interactions. Aspects such as algal-grazer defence mechanisms and digestability of alage are core topics.

Biology Environmental management Biodiversity Ecosystems
14. Effects of UV-B radiation on Microbial communities in Kongsfjorden

Effects of UV-B radiation on microbial communities in Kongsfjorden in relation to metal and dissolved organic matter availabillity.

Biological effects Ozone Biology UV radiation Heavy metals Environmental management Exposure Arctic Model ecosystem Ecosystems
15. Ecological and Physiological Investigations about the Impact of UV Radiation (UVR) on the Succession of Benthic Primary Producers in Antarctica

The succession of macro- and microalgal communities in the Antarctic will be investigated in field experiments under various UV radiation (UVR) conditions and in the absence or presence of grazers. The observed differences in the succession process will be correlated to physiological traits of single species, especially in spores and germlings, which are the most vulnerable stages in their life histories. Photosynthetic activity of the different developmental stages will be measured routinely. Additionally we plan the determination of pigment composition, C:N ratios, content of UV protective pigments and of possible DNA damage. The experiments will start in spring, concomitant to the time of highest UVBR, due to the seasonal depletion of the ozone layer in the Antarctic region. Supplemental laboratory experiments will be conducted to determine the effects of UVR on spores and germlings of individual species. In addition to the above analyses, we plan to examine of UVR induced damage of cell fine structure and of the cytoskeleton. The results of both the field and laboratory experiments will allow us to predict the consequences of enhanced UVR for the diversity and stability of the algal community.

Biological effects Biology UV radiation Environmental management Climate change Biodiversity Arctic Ecosystems Seaweeds
16. Development of monitoring guidelines and modelling tools for environmental effects from Mediterranean aquaculture (MERAMED)

1. To undertake a review of procedures used in the regulation and monitoring of marine cage fish farms in Norway, Scotland and elsewhere to be used as the basis for creating an appropriate set of protocols, monitoring systems and techniques for the control of such farms in Mediterranean conditions 2. To carry out a field research programme to provide appropriate data on the environmental impact of marine cage fish farms in a range of conditions in the eastern Mediterranean. 3. To develop a predictive model to simulate the environmental response at Mediterranean sea cage farms to differing cage stocking levels and feeding regimes. This will be designed as a management tool for both the industry and regulatory authorities.

Biological effects Sources Aquaculture Mapping Discharges Pollution sources Environmental management Contaminant transport Modelling Local pollution Sediments Ecosystems
17. Late Holocene and Shallow Marine Environments of Europe (HOLSMEER)

1. To generate high-resolution quantitative palaeoceanographic/palaeoclimatic data from NE Atlantic coastal/shelf sites for the last 2000 years using a multidisciplinary approach 2. To develop novel palaeoclimatic tools for shallow marine settings by (i) calibrating the proxy data against instrumental datasets, (ii) contributing to transfer function development, and (iii) then to extrapolate back beyond the timescale of the instrumental data using the palaeoclimate record 3. To investigate the link between late Holocene climate variability detected in the shelf/coastal regions of western Europe and the variability of the oceanic heat flux associated with the North Atlantic thermohaline circulation, and to compare such variability with existing high-resolution terrestrial proxies to help determine forcing mechanisms behind such climate change 4. To lay a foundation for the identification of hazards and resources linked with, or forced by, such climate change.

Geology Climate variability Spatial trends Environmental management Climate change palaeoceanographic/palaeoclimatic Modelling anthropogenic Geochemistry Sediments Temporal trends
18. Marine biodiversity and climate change (MARCLIM)

1. To use a combination of archival and contemporary data to develop and test hypotheses on the impact of climatic change on rocky intertidal animals and plants. 2. Forecast future community changes based on Met. Office Hadley centre models and UKCIP models. 3. Establish a low-cost fit-for-purpose network to enable regular updates of climatic impact projections. 4. Assess and report likely consequences of predicted changes on coastal ecosystems. To provide general contextual time-series data to support marine management and monitoring. 5. Evaluate use of intertidal indicator species as sustainability indices. Disseminate the results as widely as possible. 6. Provide a basis for the development of a pan-European monitoring network.

Climate variability Spatial trends Environmental management Climate change Biodiversity Temporal trends Ecosystems
19. UK Marine environmental change network

1. Establish a network to measure environmental change in marine waters by undertaking long-term research and monitoring 2. Maintain and enhance existing long-term research programmes 3. Restart important discontinued long-term research programmes 4. Develop a quality controlled database of long-term marine data series 5. Deliver and interpret long-term and broad scale contextual information to inform water quality monitoring 6. Demonstrate the benefits of preserving and networking long-term time series programmes

Biological effects Mapping Climate variability Environmental management Climate change Modelling Biodiversity Data management
20. Oceanographic Applications to Eutrophication in Regions of Restricted Exchange (OAERRE)

1. Observations of the physics of vertical and open boundary exchange in Regions of Restricted Exchanges (REEs), leading to improved parameterisation of these processes in research and simplified models. 2. Study of the phytoplankton and pelagic micro-heterotrophs responsible for production and decomposition of organic material, and of sedimentation, benthic processes and benthic-pelagic coupling, in RREs, with the results expressed as basin-scale parameters. 3. Construction of closed budgets and coupled physical-biological research models for nutrient (especially nitrogen) and organic carbon cycling in RREs, allowing tests of hypotheses about biogeochemistry, water quality and the balance of organisms. 4. Construction of simplified 'screening' models for the definition, assessment and prediction of eutrophication, involving collaboration with 'end-users', and the use of these models to analyse the costs and benefits of amelioration scenarios.

Pathways Biological effects Sources Catchment studies Spatial trends Pollution sources Environmental management Contaminant transport Local pollution Sediments Temporal trends Ecosystems Eutrophication