ENVINET Activities Catalog

ENVINET Activities Catalog

ENVINET (European network for arctic-alpine multidiciplanary environmental research) is a research infrastructure network focusing on multidisciplinary environmental research in Europe. The network involves representatives from 18 environmental research infrastructures from the European Alps to the Arctic, representatives of their users and representatives from relevant international organizations and networks. The participating infrastructures cover a broad range of environmental sciences primarily within atmospheric physics and chemistry as well as marine and terrestrial biology.

The ENVINET project directory covers data and observation activities at these stations.

Other catalogs through this service are AMAP, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 100 Next
1. GeoBasis - Zackenberg

The GeoBasis programme collects data describing the physical and geomorphological environment in Zackenberg, North East Greenland. This includes meteorology, carbon flux and energy exchange, snow cover and permafrost, soil moisture, –chemistry and nutrient balance, hydrology, river discharge and – sediment

Active layer Arctic Atmosphere carbon cycle Carbon dioxide CH4 Climate change CO2-flux measurements Energy Balance geomorphology Hydrology Hydrometeorology meteorology Permafrost Snow and ice properties snow cover Soils
2. Arctic study of trophospheric aerosol, clouds and radiation

Arctic study of trophospheric aerosol, clouds and radiation

aerosols trace gases Arctic Arctic haze Atmosphere Atmospheric processes Climate Climate change Emissions Long-range transport
3. INTERACTIONS

Important progress has been made in recent decades to describe and understand how arctic terrestrial vertebrate interact, especially concerning predator-prey interactions. Indirect interactions between different prey species modulated by shared predators (e.g. Arctic fox) are believed to have important impacts on the structure and/or dynamics of some communities. Yet, our understanding of these types of interactions is still fragmentary. To fill that gap, we will build on ongoing projects exploring related questions in Canada (Marie-Andrée Giroux, Nicolas Lecomte, Joël Bêty) and Greenland (Olivier Gilg, Niels M. Schmidt), while taking advantage of existing networks (ADSN in North America and “Interactions” program in Greenland and Eurasia). The aim of the project is to promote the implementation of several common protocols that will (1) improve each collaborator’s knowledge at the site level and, more importantly, that will (2) be merged across sites and years to improve our understanding of the functioning and the influence of indirect interactions on arctic vertebrate communities in general.

Five types of data have been identified (by the 5 initiators of the project already mentioned above) as being mandatories to answer questions related to this topic. These data sets will be collected using 5 specific protocols described in the following chapters:

  1. Monitor predation pressure using artificial nests
  2. Monitor real predation pressure on Calidris nests using Tiny Tags
  3. Observations of predators and lemmings (3b: fox scats DNA barcoding)
  4. Assessing lemming (or “rodent”) relative abundance using different methods
  5. Assessing “herbivores” (excl. rodents) relative abundance using “faeces transects”
Arctic Biodiversity Biological effects Biology Climate change Diet Ecosystems Environmental management Food webs Modelling Populations Reproduction Spatial trends Temporal trends Terrestrial mammals
4. FUVIRC-Finnish Ultraviolet International Research Centre

FUVIRC will serve ecosystem research, human health research and atmospheric chemistry research by providing UV monitoring data and guidance (i.e. calibration of instruments, maintenance of field test sites), research facilities (laboratories and accommodation), instruments and equipment.

Arctic Atmosphere Biodiversity Biological effects Biology Climate change Ecosystems Forest damage Geophysics Human health ozone Populations Reindeer Temporal trends UV radiation
5. LAPBIAT-Lapland Atmosphere-Biosphere facility

The main objective of the facility is to enhance the international scientific co-operation at the seven Finnish research stations and to offer a very attractive and unique place for multidisciplinary environmental and atmospheric research in the most arctic region of the European Union. Factors such as, arctic-subarctic and alpine-subalpine environment, northern populations, arctic winters with snow, changes in the Earth's electromagnetic environment due to external disturbances and exceptionally long series of observations of many ecological and atmospheric variables should interest new users.

Arctic Atmosphere Atmospheric processes Biodiversity Biological effects Biology Climate Climate change Climate variability Data management Ecosystems Emissions Environmental management Exposure Geophysics Human health Local pollution Long-range transport Modelling ozone Persistent organic pollutants (POPs) Populations Reindeer Spatial trends Temporal trends UV radiation
6. Arctic and Alpine Stream Ecosystem Research

The project, Arctic and Alpine Stream Ecosystem Research (AASER), started within EU’s Climate & Environment Programme and now continues with national funding, primarily Norway, Italy and Austria. The objective is to study dynamics and processes in rivers systems in Arctic and Alpine regions. Emphasis is given to the relationships between benthic invertebrates and environmental variables, especially in glacier-fed systems and in relation to climate change scenarios. On Svalbard research is concentrated around Ny Ålesund, particularly Bayelva and Londonelva. In 2004 the focus will be on the use to stable isotopes to detect transfer processes within and between ecosystems.

Glaciers Biology Catchment studies Spatial trends Climate change Biodiversity Arctic Food webs Temporal trends Ecosystems
7. Pallas-Sodankylä, GAW station, Northern Finland

GAW serves as an early warning system to detect further changes in atmospheric concentrations of greenhouse gases and changes in the ozone layer, and in the long-range transport of pollutants, including acidity and toxicity of rain as well as the atmospheric burden of aerosols.

Atmospheric processes Ozone Arctic haze UV radiation Radioactivity Climate variability Long-range transport Climate Acidification Contaminant transport Climate change Radionuclides Arctic Atmosphere Temporal trends
8. National deposition monitoring, Northern Finland

Monitoring of direct deposition. Project is run by Finnish Meteorological Institute (FMI).

Atmospheric processes Heavy metals Long-range transport Acidification Arctic Atmosphere Temporal trends
9. Investigation of the physiological and cellular adaptation of plants to the arctic environ-ment – comparison with high alpine conditions

The objective of our work with arctic terrestrial plants and with algae is to study the range of climate adaptation as is expressed in special ultrastructure of cells and tissues, in photosynthetic metabolism, in antioxidative and sun screen compounds under a cold and reduced PAR / UV-B environment (climate different to alpine conditions). This is a comparison of ecophysiological processes already worked out mainly from high alpine plants, which live periodically under stronger cold and under different light regimes, especially higher UV-B and PAR irradiation. We want to find out, whether adaptations found in some alpine organisms occur similarly in polar forms.

Ultrastructure Biological effects UV radiation physiology stress adaptation Climate change Arctic Cold stress Ecosystems
10. Biology of Arctic macroalgae

The effects of stratospheric ozone depletion and of global warming on the marine biosphere are still underexplored, especially in the Arctic. Seaweeds are very important primary producers but are strongly susceptible to enhanced UV radiation and elevated temperatures, especially their spores. The UV susceptibility of spores has previously been invoked to determine the depth distribution of seaweeds. Therefore, we will investigate the effect of different radiation and temperature conditions on the ultra-structure, physiology and biochemistry of spores from various brown and green algae growing in different water depths. Moreover, we will study competition between zoospores of various species of brown macroalgae in order to get an insight about biotic factors structuring seaweed communities and also to explain more clearly the present seaweed zonation pattern.

Biological effects UV radiation DNA damage seaweeds Climate change spores phlorotannins UV screening pigments Arctic fine structure
11. IOANA

The project IOANA proposes to better understand the intimate coupling between ozone mixing ratios and particulate nitrate isotopic characteristics. Ozone Depletion Events which occur in Arctic coastal locations shortly after sunrise are a subject of interest per se (scientifically challenging for two decades) but also provide a context in which ozone mixing ratios are highly variable, enabling to characterize the dynamic of correlation and process studies with a resolution of a day. This is a first step towards the use of the isotope tool in reconstructions of the oxidative capacity of the atmosphere. This programme is a preparation of the IPY-OASIS project and propose to coodinate a set of collaborations than will be effective duing the International Polar Year.

Atmospheric processes Sources Ozone Arctic haze Long-range transport Pollution sources Climate change stable isotopes Arctic Ice cores nitrogen nitrate Atmosphere
12. ISACCO(Ionospheric Scintillations Arctic Campaign Coordinated Observations)

The polar ionosphere is sensible to the enhancement of the electromagnetic radiation and energetic particles coming from the Sun expecially around a maximum of solar activity . Some typical phenomena can occur such as, among the others, geomagnetic storms, sub-storms and ionospheric irregularities. In this frame the high latitude ionosphere may become highly turbulent showing the presence of small-scale (from centimetres to meters) structures or irregularities imbedded in the large-scale (tens of kilometers) ambient ionosphere. These irregularities produce short term phase and amplitude fluctuations in the carrier of the radio waves which pass through them. These effects are commonly called Amplitude and Phase Ionospheric Scintillations that can affect the reliability of GPS navigational systems and satellite communications. The goal of this proposal is to contribute to the understanding of the physical mechanisms responsible of the ionospheric scintillations as well as to data collecting for nowcasting/forecasting purposes at high latitude. As the scarceness of polar observations, the specific site near Ny-Ålesund is of particular experimental interest.

Mapping Geophysics Modelling Arctic Atmosphere ionospheric scintillation and TEC (Total Electron Content) monitoring.
13. ATMospheric Fluxes from Arctic Snow Surfaces - ATMS

The central objectives of the proposed ATMAS project are:  to quantify the photo-chemically triggered NOx and HONO re-emission fluxes from permanently and seasonally snow-covered surfaces in the Arctic near Ny-Ålesund,  to quantify the sources of NO3 in these snow-covered surfaces. In detail, the following scientific objectives of ATMAS can be distinguished: 1. to quantify atmospheric gradient fluxes of HNO3, HONO, particulate nitrogen compounds, and nitrogen in precipitation (snow and rain) above snow surfaces; 2. to quantify the emission of NOx and HONO from the snow pack as atmospheric gradient fluxes 3. to formulate an influx-outflow relationship that can be used in dependence on the snow type for (photo-)chemical atmospheric process models. The results of this research may be expanded to a regional (European) or global scale, to suggest how the NOx and HONO re-emission process and its consequences can be included into regional emission, dispersion and deposition models used in Europe.

Atmospheric processes Ozone gaseous ammonia nitrogen bio-geochemical cycle Pollution sources Climate change tropospheric boundary layer nitrogen oxides Ice Emissions SNOW and SNOWPACK Arctic Data management photochemical production Atmosphere Human health
14. Sun-Earth Interaction: Auroral Observations from Svalbard Islands with “ITACA”, ITalian All-sky-Camera for Auroral observations

Observation of the high latitude auroral activity, during the winter season, by means of automatic all-sky camera(s). Study of the high-latitude auroral activity, focusing on the so-called “dayside auroras”: a particular phenomenon concerning the direct precipitation of the thermalised solar wind plasma through the geomagnetic cusps, favourably observable from the Svalbard. The analysis of the data, mainly devoted to the “dayside auroras”, will concern the comparison of the optical images obtained from both the station of Ny-Alesund and the new one of Daneborg (Greenland) with the data collected by Wind, ACE, DSMP, Polar, and Cluster satellites. Starting from the 2002 season, the joint auroral observations from Ny-Alesund and Daneborg allows the monitoring of a relevant area involved in the “dayside aurora” phenomena.

Atmospheric processes "dayside auroras" high-latitude auroral observation Geophysics Modelling Arctic magnetic substorm Data management Atmosphere auroral oval ITACA²
15. Organic compounds: precursors and their oxidation products in the Artic environment

The min goals are: -to study the organic composition, trace gas and aerosols in environmental air; -to try to identify transport phenomena (i.e. from Europe), local degradation and removal processes; -to evaluate the effect of the organic compounds on the polar environment, toxic compounds or formed photochemical products in order to prevent and protect the climatology and their environment. Organic compounds determination is focused on two sampling field campaigns in the Arctic region, in the summer and in the winter corresponding at day conditions and night time.

PCBs PAHs Long-range transport Arctic Atmosphere
16. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
17. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
18. Contaminants in polar fox

Arctic animals utilize periods with high food availability for feeding and lipid deposition, whereas they rely on stored lipids during unfavorable periods. Hence, many arctic inhabitants exhibit profound seasonal cycles of fattening and emaciation. In the Arctic, feeding is associated with fat deposition and contaminant accumulation. When lipids are mobilized, accumulated contaminants are released into the circulation. Consequently, blood contaminant concentrations may increase markedly and result in a redistribution of the contaminant(s) from “insensitive”, adipose tissues to sensitive organs, and increased contaminant bioavailability. Such variations complicate interpretations of pollutant toxicity, both in effect studies and in monitoring programs, and remains an important future reseach area. In the present study, we will use arctic fox (Alopex lagopus) as a model species for investigating tissue distribution and bioavailability of organochlorine contaminants (OCs) in relation to natural variations in lipid status (field study). These data will be supplemented and validated through a contamination study with blue fox (A. lagopus), where the seasonal changes in lipid status of wild fox are simulated in the laboratory. In both the field and laboratory study, possible effects of OCs on steroid hormone synthesis, and plasma levels of hormones, vitamin E and retinol will also be assessed.

Biological effects Biology Organochlorines PCBs Arctic Persistent organic pollutants (POPs) Pesticides
19. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
20. ARCTAPHID: biology and ecology of aphid populations in arctic environment.

In a context of global change, arctic ecosystems are exposed to deep modifications not only of the biology and ecology of endemic species but also of the interactions they may have with an increasing number of introduced species. This project attempts to assess in Svalbard, the impacts of global changes on aphids. These phytophagous insects are particularly relevant organisms for studies on the effects of global warming and biological invasion because 1) of their extreme sensitivity to micro- and macro- changes due to their spectacular rate of increase and phenotypic plasticity and 2) of their colonizing capacity conferred by their parthenogenetic mode of reproduction and their dispersal potential

ecology Biological effects Biology Populations adaptation Climate change life cycle invasive species Arctic Reproduction aphids Ecosystems