AMAP Project Directory

AMAP Project Directory

The AMAP Project Directory (AMAP PD) is a catalog of projects and activities that contribute to assessment and monitoring in the Arctic. The Arctic Monitoring and Assessment Programme (AMAP), is a working group under the Arctic Council, tasked with monitoring and asessing pollution, climate change, human health and to provide scientific advice as a basis for policy making.

The directory, which is continously updated, documents national and international projects and programmes that contribute to the overall AMAP programme, and provides information on data access as well as a gateway for the AMAP Thematic Data Centres.

Other catalogs through this service are ENVINET, SAON and SEARCH, or refer to the full list of projects/activities.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 313 Next
1. GeoBasis Disko 2017-2018

The GeoBasis Disko monitoring program started in 2017 as a part of the cross disciplinary Greenland Environmental Monitoring (GEM) program. GeoBasis Disko is an integrated part of the GeoBasis program, following the same standards as in Nuuk and Zackenberg (two other GEM sites) and largely focusing on the same parameters and methodologies. GeoBasis Disko is finaced by Danish Ministry of Energy, Utilities and Climate.

A close collaboration and synergy with Arctic Station that is manned year round makes it possible to collect and carry out measurements also during winter.As location Qeqertarsuaq on the south coast of the Disko island, represent a Greenlandic west coast climate, with annual mean temperatures just below 0°C, with discontinuous permafrost, and as such remarkably different from the two existing GEM sites. Further, the Disko bay area is highly interesting from a socioeconomic perspective due its high population and active fishery industry, and as one of the most popular tourist destinations in Greenland.

The primary objective of GeoBasis Disko is to establish baseline knowledge on the dynamics of fundamental abiotic terrestrial parameters within the environment/ecosystem around Arctic Station. This is done through a long term collection of data that includes the following sub-topics;

  • Snow properties; including spatial and temporal variation in snow cover, depth and density.
  • Soil properties; spatially distributed monitoring of key soil parameters such as temperature, moisture, and concentration of nutrient ions
  • Meteorology; monitoring of essential meteorological variables across various surface types and elevations.
  • Gas Flux monitoring; plot and landscape scale flux monitoring of CO2, H2O and energy in wet and dry ecosystems.
  • Hydrology; monitoring of seasonal variation in river water discharge, chemistry and suspended sediment.
  • Geomorphology; monitoring of shorelines, coastal cliff foots and cross-shore profiles.

GeoBasis focuses on selected abiotic parameters in order to describe the state of Arctic terrestrial environments and their potential feedback effects in a changing climate. As such, inter-annual variation and long-term trends are of paramount importance.

 

 

Active layer Arctic CO2 gas exchange Digital camera Energy Balance freshwater geomorphology Hydrology Monitoring riverine transport Sea ice snow cover Soil water suspended solids terrestrial ecosystem
2. DiskoBasis -Ecosystem monitoring at Arctic Station

In 2013 a new ecosystem monitoring programme “DiskoBasis” was initiated at Arctic Station on Disko Island, Greenland. The project is partly funded by the Danish Energy Agency. The primary objective of DiskoBasis is to establish baseline knowledge on the dynamics of fundamental physical parameters within the environment/ecosystem around Arctic Station. This initiative extends and complements the existing monitoring carried out at Arctic Station by including several new activities –especially within the terrestrial and hydrological/fluvial field. DiskoBasis include collection of data in the following sub-topics; • Gas flux, meteorology and energy balance • Snow, ice and permafrost • Soil and soil water chemistry • Vegetation phenology • Hydrology -River water discharge and chemistry • Limnology -Lake water chemistry • Marine -Sea water chemistry

Arctic Catchment studies Climate Climate change Climate variability CO2-flux measurements Discharges Ecosystems Geochemistry Geophysics Hydrography Ice Limnology Permafrost Sea ice Soils
3. Faroese Monitoring (FARMON)

Projektet har til formål at forlænge og forbedre monitering af to strømsystemer gennem færøsk territorialfarvand, som udveksler vand, varme og salt mellem Arktis og resten af Verdenshavet. Den ene af disse er strømmen af koldt vand fra Arktis gennem dybet af Færøbanke kanalen, som transporterer varme og kuldioxid fra atmosfæren ned i Verdenshavets dybe vandmasser. Den anden er Færøstrømmen, som er den stærkeste transportør af ocean varme mod Arktis med indvirkning på klima, fiskebestande og isudbredelse. Endvidere vil projektet studere opsplitningen af Færøstrømmen i to separate strømgrene med forskellig indflydelse på forskellige områder og processer i Arktis. Projektet vil omfatte feltaktivitet fra sommer 2017 til sommer 2018 med udlagte måleinstrumenter og tilsammen fire hydrografiske togter med forskningsskib. Indsamlede måledata vil blive analyseret sammen med satellit­data og historiske observationer med henblik på at forlænge de ca. 20 år lange tidsserier for de to strømsystemers transporter samt at rationalisere det eksisterende moniteringssystem, således at det i fremtiden vil være mindre afhængigt af kostbare in situ målinger.

Hydrography Monitoring Ocean currents Oceanography
4. Western Valley OverfloW

The WOW project is a cooperation between Havstovan (Faroe Marine Research Institute, HAV) and the Danish Meteorological Institute (DMI) to 1) measure the overflow of cold water from the Arctic into the rest of the World Ocean through the Western Valley of the Iceland-Faroe Ridge, to 2) allow the effects of this flow to be adequately simulated in climate model projections of the thermohaline circulation and the heat transport towards the Arctic, and to 3) design a low-cost monitoring system for this flow.

Currents fluxes Modelling Ocean currents Overflow
5. Monitoring of Cs-137 and Sr-90 in consumption milk

Monitoring of cesium-137 and strontium-90 in consumption milk is a sub-programme of a national monitoring program regarding environmental radiation in Sweden. The sub-programme has been ongoing since 1955. In the event of increased deposition of radionuclides, e.g. after a nuclear accident, transfer to cow milk is a quick process. The concentration in milk is therefore a good indicator of any changes of the levels of radionuclides in the area. Monitoring is performed at 5 dairies: Umeå, Sundsvall, Kallhäll, Jönköping and Malmö, where milk is sampled 4 times per year.

137-Cs 90-Sr Cesium Contaminant transport Exposure Food gamma radiation Human health Long-range transport Mapping milk Radioactivity Radionuclides strontium Temporal trends
6. Measurements of gamma-radiation in the environment

Measurements of gamma-radiation in the environment (from ground to cosmos). Radioactivity in Intensive Net is measured on the soil surface at 28 sites in Sweden. The measurements are continuous and sound the alarm if radioactivity increases. Measured is the dose rate of gamma radiation. Radioactivity in Extensive Net is concerned all municipalities in Sweden which has got one instrument for gamma radiation measurement and each county board has got two. Every seventh month they measure radioactivity at two to four predefined spots as reference measurement. Radioactivity in Air is conducted at five stations with air filter sampling and analysis of radioactivity maintained by Swedish Defence Research Agency (FOI). Out of these stations Umeå and Kiruna are located in northern Sweden.

Atmosphere crops Cs-137 Exposure Food gamma radiation Long-range transport Mapping natural radiation nuclear radiation Radioactivity Radionuclides Reindeer Sediments Soils Spatial trends Temporal trends
7. Throughfall Monitoring Network in Sweden

National Monitoring Programme in Sweden. The purpose is to quantify deposition (mainly of sulphur and nitrogen), and to illustrate effects in the soil, for example possible acidification. The aim of the network is to describe the current situation, regional differences, trends over time, and the effects of acid deposition. The atmospheric deposition of sulphur and nitrogen are the main causes of current acidification of ecosystems. Acidification results in substantial pH reduction in soil, groundwater, lakes and water courses. Deposition is investigated as precipitation studies in open field areas (bulk precipitation) and by throughfall studies in nearby forest stands. For sulphur and chloride, throughfall monitoring is useful for determination of total deposition. In areas, or during periods with low sulphur deposition, internal circulation in vegetation might influence results from throughfall measurements significantly. For nitrogen and base cations (mainly potassium and manganese) canopy interaction is important. Air concentrations of sulphur and nitrogen dioxide, ammonia, and ozone are measured at some locations. The observations made are: (i) air chemistry (SO2, NO2, NH3, O3); (ii) soil water chemistry (pH, Alk, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn, Fe, ooAl, oAl, Al-tot, total organic carbon); (iii) deposition in open field (precipitation, H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn); (iv) deposition in forest (throughfall, H+, SO4-S, Cl, NO3-N, NH4-N, Ca, Mg, Na, K, Mn). For nitrogen and base cations (mainly potassium and manganese) canopy interaction is important. Soil solution chemistry in the forest stands is used as indicator of soil conditions.

acidification acidity alkalinity Atmospheric processes Ca Cl condictivity Contaminant transport Data management Dioxins/furans Eutrophication Geochemistry K Local pollution Long-range transport Mg Na NH4 NO3 pH precipitation SO4 Spatial trends Temporal trends
8. Deposition on high altitudes

The aim of this project is to measure the airborne deposition of acidifying and eutrophicating compounds (gaseous and particulate reduced and oxidised nitrogen and sulphur compounds) in air and precipitation over Sweden at high altitude. The results from this programme is used to calculate and model basic processes governing sources, atmospheric transport and sinks of atmospheric trace constituents. The observations are made at three stations. The measurements include particulate reduced and oxidised nitrogen and sulphur compounds in gaseous and particulate form in air and precipitation.

acidification air particles Arctic Atmosphere Contaminant transport deposition in forest deposition in the open fied Eutrophication Local pollution Long-range transport Mapping Modelling precipitation Spatial trends Temporal trends throughfall
9. Pollutants in air, monthly values, Precipitation chemistry, monthly sampling.Ozone measurements, passive sampling.S- and N-components in air with passive sampling.

 

This project is now part of the project: Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring Programme. National Environmental Monitoring Programme. The PMK Network is part of the national network for deposition measurements. The aim is (i) a long-term monitoring of concentration and deposition of selected air transported compounds caused acidification and eutrophication in different parts of Sweden; (ii) to generate knowledge about long-term variation in the field deposition, (iii) to give the background data from low polluted areas for calculation of pollutants deposition in more polluted areas the monitoring of pollutants in air and precipitations are proceed. Ozon and air samples for analysis of sulphur and nitrogen compounds, HCl as well as basic metal ions (Na, K, Ca, Mg, are taken on a monthly basis in air and precipitation. Ozone, as well as sulphur and the nitrogen compound particles are measured in air, and sulphur and nitrogen compounds, base cations, pH and electro-conductivity in precipitation.

acidification Arctic Atmosphere Contaminant transport Data management Dioxins/furans Eutrophication Exposure Local pollution Long-range transport Mapping ozone precipitation Temporal trends
10. Pollutants in air, daily values

 

This project is now part of the project : Acidifying and Eutrophifying Substances in Air and Precipitation

National Environmental Monitoring in Sweden. The project is included in a European Monitoring and Evaluation Programme network (EMEP). The subprogram main task is to check if international agreements as UN Convention on Long range Trans-boundary Air Pollution (CLTRAP) is followed. The measurements follow up the Swedish national generational goals "Natural Acidification Only", "A Non-Toxic Environment" and "Clean Air". The network comprises 10 stations, out of which three are in north Sweden, the two one are in AMAP area. Air chemistry is monitored by diffusion samplers. The following compounds are measured: SO2, SO4, tot-NH4, tot-NO3, soot, NO2. Precipitation quality is monitored following measured compounds: SO4-S, NO-N, Cl, NH4-N, Ca, Mg, Na, K, pH, EC. Metals in air and precipitation are analysed only at one north station (Bredkälen), and include: As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, V, Hg, methyl-Hg.

acidification air pollution Arctic Atmosphere Contaminant transport Data management Dioxins/furans EMEP Eutrophication Long-range transport Mapping Modelling ozone precipitation Spatial trends Temporal trends
11. Metals in precipitation, Mercury in air

National Environmental Monitoring Programme in Sweden, in the "Air" programme area. Eleven chemical parameters are measured in precipitation every month, and in the air Hg (TGM and TPM) is measured weekly. Measurements are carried out at 4 stations in Sweden and one in Finland.  The project is part of an international network that follows the variations in the levels and deposition of heavy metals, particularly mercury, in the Arctic region.

Arctic As Atmosphere Cd Co Contaminant transport Cr Cu Data management Heavy metals Hg Long-range transport Mn Ni Pb Temporal trends TGM TPM V Zn
12. Acidifying and Europhifying Substances in Air and Precipitation

This project is a merging of two previous projects: "Pollutants in air, daily values" and "Pollutants in air, monthly values, Precipitation chemsitry, monthly sampling, Ozone measurements, passive sampling. S- and N- Components in air with passive sampling."

National Environmental Monitoring program in Sweden. The subprogram "Acidifying and Eutrophifying Substances in Air and Precpipitaiton" is included in a European Monitoring and Evaluation Programme network (EMEP) and in the national program "Air and Precipitation Chemistry Network" (LNKN). The EMEP network currently comprises 4 stations, out of which 1 is located in northern Sweden, close to AMAP area. The LNKN measurements of substances in air are currently performed at 9 stations and in precipitation at 16 stations. Monitoring is performed Daily within the EMEP network and monthly within the LNKN network.

acidification air air pollution Arctic Atmosphere EMEP Eutrophication Long-range transport precipitation Spatial trends
13. Measurements of climate-influencing substances on Svalbard

National Environmental Monitoring in Sweden in the "Air" programme. The objective of the project is to follow climate-changing gases and particles and which effects they could have on the climate of earth. To understand and assess the human effect on the climate, regionally and globally, the atmospheric aerosols and greenhouse gases are monitored. The project aims follow: (i) detecting long-term trends in the carbon dioxide level, as well as trends in the amount or composition of aerosols in the background atmosphere; (ii) provide a basis to study the processes that control the aerosol life cycle from their formation through aging and transformation, until being removed from the atmosphere; (iii) provide a basis to study the processes (sources, sinks, and transport pathways) that control the level of carbon dioxide in the atmosphere; (iv) contribute to the global network of stations that perform continous measurements of atmospheric particles and trace gases to determine their effect on the earths radiation balance and interaction with clouds and climate.

Arctic Atmosphere Atmospheric processes Carbon dioxide CH4 Climate Climate change Climate variability CO2 Contaminant transport Data management Emissions Light absorption Light dispersion Long-range transport methane Particle concentrations Particle size distribution Temporal trends
14. Organic substances in biota

National Environmental Monitoring in Sweden. The monitoring of persistent organic pollutants (POPs) in fish is performed in 110 lakes in Sweden and annual sampling is carried out in 32 lakes, of which 7 are located in or close to the AMAP area. Three fish species have been selected: Arctic char (Salvelinus alpinus), Northern pike (Esox lucius), and Perch (Perca fluviatilis). Fish are sampled, prepared, and stored in the Environmental Specimen Bank (ESB) at the Swedish Museum of Natural History (NRM). PCB, HCH, HCB, DDT, DDE, PFAS and PBDE are some of the POPs that are analysed.

Arctic Arctic char Biology Contaminant transport Dioxins/furans Esox lucius Fish Long-range transport Mapping Northern pike Organochlorines PCBs Perch Persistent organic pollutants (POPs) Pesticides Salvelinus alpinus Spatial trends Temporal trends
15. Metals in biota

National Environmental Monitoring in Sweden. Monitoring of heavy metals in fish is performed in 110 trend lakes in Sweden. Annual sampling is carried out in 32 lakes, of which seven are in AMAP area. Three fish species have been selected: Arctic char (Salvelinus alpinus), Northern pike (Esox lucius), and Perch (Perca fluviatilis). A selection of metals is analysed in prepared samples of muscle and liver tissue. Analysed metals in liver are : Al, Ag, As, Bi, Cd, Cr, Cu, Ni, Pb, Sn and Zn. In muscle samples Hg and stabile isotopes δ 15N, δ 13C are analysed.

Arctic Biological effects Contaminant transport contamination Data management Discharges Fish lakes Local pollution Mapping Spatial trends Temporal trends trace elements vertebrate
16. Continual monitoring of the ozone layer.

National Environmental Monitoring in Sweden in "Air" programme and sub-programme "the thickness of the ozon layer". The project follows changes in the thickness of the ozone layer in the atmosphere over Sweden.

Arctic Atmosphere Climate Data management Exposure Modelling national monitoring ozone UV radiation
17. The Swedish National Forest Inventory


This project was previously a part of the project: National Survey of Forest Soils and Vegetation.

The Swedish National Forest Inventory (NFI) has the task of describing the state and changes of Sweden's forests. The inventory gathers basic information on forests, forest stand conditions and vegetation. Regularly monitored variables are: forest state, injuries, growth, logging operations, new forest stand, and environmental assessment. There is a close collaboration between the NFI and the Swedish Forest Soil Inventory (SFSI).

Biodiversity Biological effects Data management Environmental management forest Forest damage Temporal trends
18. National Survey of Forest Soils and Vegetation

 

This project has been divided into two new projects: The Swedish Forest Soil Inventory and the Swedish National Forest Inventory.

The Swedish National Forest Inventory has the task of describing the state and changes in Sweden's forests. The inventory gathers basic information on forests, soils and vegetation. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. Regularly reported variables are: forest state, injuries, and growth, logging operations, new forest stand, and environmental assessment. Invented variables on permanent sampling plots include: position in the landscape, field vegetation, site conditions, soil sampling, assesment of soil characteristics, chemical analysis of soil in O-, B-, BC- and C-horizons.

acidification Biodiversity Biological effects Contaminant transport Data management Ecosystems Environmental management forest Forest damage Geochemistry Geology GIS Long-range transport Mapping Modelling Pathways Soils Spatial trends Temporal trends vegetation
19. The Swedish Forest Soil Inventory

 

This project was previously a part of the project: National Survey of Forest Soils and Vegetation.

The Swedish Forest Soil Inventory (SFSI) is part of the national environmental monitoring programme Forests and collects information about soil conditions and chemistry from around 23 500 permanent plots throughout Sweden. One tenth of these sampling plots are re-visited each year. The inventory is commissioned by the Swedish Environmental Protection Agency and is carried out by the Department of Soil and Environment at the Swedish University of Agricultural Sciences (SLU).

The inventory gathers basic information on soils and vegetation on predominantly forest land, but also semi-natural grassland and wetland below the alpine forest limit. It includes most aspects concerning soils, for example: soil types, soil chemistry including organic matter, water conditions and content of stones and boulders. Acidification, nitrogen deposition and the contribution by soils to climate change are some of the current issues dealt with. There is a close collaboration between the SFSI and the National Forest Inventory (NFI), and the inventoried plots are a subset of the NFI plots. .

acidification Biodiversity Data management forest Geochemistry Geology Soils Spatial trends Temporal trends vegetation
20. Metals in mosses

National Environmental Monitoring Programme in Sweden. The objective is to follow the deposition of heavy metals over Sweden by the analyses of their concentration in two selected species of moss. The selected species are: Red-stemmed Feather-moss (Pleurozium schreberi) and Mountain Fern Moss (Hylocomnium splendens). Preferred specie: Red-stemmed Feather-moss (Pleurozium schreberi). Metals adsorbed by mosses almost exclusively come from the air and metal concentration in mosses are therefore seen as a proxy for metal deposition. Analysed elements are: Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, V, Zn (2015). The moss samples are taken from over 600 stands across Sweden.

Al As Atmosphere Biological effects Cd Cr Cu Fe Hg Hylocomnium Local pollution Long-range transport Mapping Mn Mo mosses Ni Pb Pleurozium Spatial trends Temporal trends V Zn (2010)