USA: projects/activities

Directory entires that have specified USA as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 99 Next
1. US Circum Arctic Rangifer Monitoring and Assessment Network (CARMA) (CARMA)

To focus on the status of most of the large migratory Rangifer (caribou/reindeer) herds.

2. North Slope Science Initiative (NSSI) (NSSI)

This mission of the North Slope Science Initiative is to improve the regulatory understanding of terrestrial, aquatic and marine ecosystems for consideration in the context of resource development activities and climate change. The vision of the North Slope Science Initiative is to identify those data and information needs management agencies and governments will need in the future to develope management scenarios using the best information and mitigation to conserve the environments of the North Slope

Ecosystems Human health Oceanography
3. Alaska Surveillance, Epidemiology and End Results (SEER)

Within the State of Alaska, the Alaska Surveillance, Epidemiology and End Results (SEER) program collects and publishes cancer data as part of the National Cancer Institute’s overall SEER program, and the Alaska Native Stroke Registry is a project to increase the understanding of stroke in Alaska Natives, with the goal of improving stroke care. Circumpolar linkage of such networks would facilitate international collaboration, international standardization of data collection international comparison of comparable data, thereby greatly adding to our knowledge of Arctic health, and enhancing design of treatment and prevention.

Human health
4. Alaska Soil Survey

The USDA also manages the Alaska Soil Survey, a scientific inventory of soil resources in 31 different regions of the state. The data are used for making maps, identifying physical and chemical properties of soils, and supplying current information on potential uses and limitations of soils. The Soil Survey contributes to the Natural Resources Inven-tory that involves monitoring of the changes and trends in natural resource use and condition.

5. NASA Hydrology

NASA satellites (Figure 13) support an extensive Global Water Cycle science focus area and contribute to high accuracy, stable, sustained observations and associated modeling for terrestrial hydrology and cryosphere studies. Derived geophysical products for terrestrial hydrology and cryosphere are available from the NSIDC’s Distributed Active Archive Center (DAAC). They include: soil moisture and snow water equivalent from AMSR-E; Greenland ice sheet altimetry and global land surface altimetry from ICESat/GLAS; snow cover extent/area from MODIS; surface albedo and temperature from AVHRR Pathfinder. SAR data obtained from a variety of foreign satellites since 1991 are archived at the ASF DAAC. SAR data provide opportunities for change detection, including interferometric SAR (InSAR) studies of glacier and ice sheet surface elevation and dynamics (ice velocity maps), land surface elevation, and soil moisture. GRACE has been used to determine the mass loss from the Greenland ice sheet and from glaciers in southeast Alaska. The surface elevation of the Greenland ice sheet is mapped using ICESat, and the Advanced Spaceborne Thermal Emission and Reflec¬tion Radiometer (ASTER) is used to acquire imagery and topography of the ice sheet.

6. DOD Permafrost observing activities

DOD observing activities related to Arctic terrestrial hydrology and cryosphere focus mainly on perma¬frost at two facilities maintained by CRREL: the Permafrost Tunnel at Fox, Alaska, and the Permafrost Research Station at Fairbanks, Alaska. The permafrost tunnel is primarily a research facility, where ground temperatures have been monitored continuously since 1963. At the Permafrost Research Station, ground and air temperatures have been monitored intermittently since 1947; continuous measure¬ments resumed in 2006 and a Circumpolar Active Layer Monitoring (CALM) site was added in 2004. CRREL also monitors shallow ground temperatures at research sites at Shishmaref and Fort Wainwright, Alaska.

7. EPA National Aquatic Resource Survey (NARS)

The EPA National Aquatic Resource Survey (NARS) assesses the condition of the Nation’s aquatic resources, including those in Alaska. NARS is an integrated and comprehensive program that monitors five different categories of aquatic resources: coasts, streams, rivers, lakes, and wetlands. Each of the five aquatic resource categories sample specific indicators to provide information on the physical, chemical and biological condition of the resource. Examples include: coasts (water chemistry, sediment quality, benthic condition, fish tissue contaminants, habitat condition); streams (benthic condition, nutrients, sedimentation, fish habitat, riparian vegetation); rivers (fish, benthos, periphyton, nutrients, sedi-mentation, recreational indicators); lakes, including ponds and reservoirs (zooplankton, phytoplankton, sediment diatoms, sediment mercury, nutrients, microcystin, enterococcus, fish tissue chemistry); wetlands (to be determined). Sampling was conducted for the National Coastal Assessment in south central Alaska in 2002, in southeast Alaska in 2004, and the Aleutians in 2006-2007. Pilot surveys were conducted for the National Wadeable Streams Survey in the Tanana basin in 2004-2005, and for the National Wadeable Lakes Survey in the Kenai region in 2007-2008.

8. Alaska Fisheries Science Center surveys

The Alaska Fisheries Science Center (AFSC), under NOAA’s National Marine Fisheries Service (NMFS) is responsible for the development and implementa¬tion of NOAA’s scientific research on living marine resources in Alaskan waters. Research addresses more than 250 fish and 42 marine mammal stocks dis¬tributed on the US continental shelf and in adjacent pelagic waters. Twenty-seven commercially-important fish and crab stocks are assessed annually. The study of the effects of climate change on marine resources evidenced by loss of sea ice and ocean acidification in the Bering and Chukchi seas is a key research area. The AFSC leads a suite of fisheries research and assessment cruises in the Gulf of Alaska, Aleutian Islands and Bering Sea, which include: 1. Annual eastern Bering Sea shelf bottom trawl survey 2. Biennial (even number years) survey, eastern Bering Sea 3. Biennial (even number years) bottom trawl survey, Aleutian Islands 4. Biennial (even number years) summer Pollock survey, eastern Bering Sea shelf 5. Annual winter Aleutian basin Pollock survey 6. Annual winter Shumagin Islands Sanak Trough Pollock survey 7. Annual winter Shelikof Strait Pollock survey 8. Annual sable fish longline survey 9. Bering-Aleutian Salmon International Survey extended to the Chukchi Sea and the Eastern Bering Sea Shelf (BASIS).BASIS is a gridded fisheries oceanography survey that includes CTD and NPZ observations in addition to catches from epipelagic (0-20m) trawls. The AFSC is expanding marine fish survey effort in the Arctic Ocean, including: 1. Beaufort Sea Marine Fish Survey planned for August 2008, a cooperative project of NOAA, UA, UW and MMS (providing funding); 2. Inter-tidal and sub-tidal Marine Fish and Habitat (“ShoreZone”) Surveys near Point Barrow (Beaufort and Chukchi Seas) in 2006 and 2008; and 3. Chukchi Sea Marine Fish Survey, an extension of BASIS possible for August 2008, contingent on NOAA ship availability.

Fish Oceanography
9. NASA Ice monitoring

NASA satellites (Figure 13) and numerous instruments provide high accuracy, stable, circum-Arctic measurements for ocean and sea ice observing, including surface vector winds over the ice-free ocean, sea surface temperature, marine phytoplankton and sea ice temperature. The NASA satellites and ocean and sea ice data sets include: 1. Passive microwave time series of sea ice extent begin in 1978 and are archived at NSIDC. 2. The major Synthetic Aperture Radar (SAR) time series is from the Canadian RADARSAT satellite launched in 1995. RADARSAT data of the Arctic Ocean are processed by the RGPS (RADARSAT Geophysical Processing System, yielding high-resolution charts of ice motion, age/thickness and deformation. All RGPS data are archived at the NASA-supported Alaska Satellite Facility (ASF), University of Alaska Fairbanks. 3. GRACE is a joint NASA/German mission that measures the changes in gravity associated with the changing mass of the ocean, land, and ice sheets. In experimental measurements, GRACE has measured the changes of mass associated with the shift of ocean currents in the Arctic Ocean. 4. The ICESat satellite is in a high latitude orbit (86°N) and can determine the free surface height of the Arctic Ocean up to that latitude. These laser measurements can be used to determine the geostrophic flow. ICESat also measures the height of the snow/air interface of the sea ice, which can be used to estimate sea ice thickness when combined with other data, e.g., snowfall and ice motion, or radar altimeter measurements of the sea ice freeboard. 5. Sea surface temperature (SST) and ice surface temperature (IST) are measured by NASA with the MODIS instrument aboard the Aqua and Terra satellites. The AMSR-E instrument on Aqua measures all-weather sea surface temperature. The follow-on instrument to MODIS is the Visible Infrared Imaging Radiometer Suite (VIIRS), scheduled for launch in 2010 on NPP (NPOESS Preparatory Project). The NPP follow-on satellite is the NPOESS (National Polar-orbiting Environmental Satellite System) series beginning in 2013. 6. Satellite-derived ocean color is used in combina-tion with environmental data to provide primary productivity. NASA currently provides ocean color from observations taken by the MODIS instrument on Aqua. Under present plans, the MODIS replacement is VIIRS on the NPP and NPOESS satellites. Because VIIRS on NPP is not expected to yield the same high quality of ocean color measurements as MODIS, there may be a gap in the high accuracy of these measurements.

Sea ice Oceanography
10. USCG ocean and ice monitoring

The USCG contributes to ocean and sea ice observa¬tions through a number of activities. First, USCG supports Arctic research through its icebreaking operations. Assets include three polar class icebreak¬ers, of which HEALY operates in the Arctic, POLAR SEA has recently completed drydock work, and POLAR STAR is in caretaker status pending an Administration decision on how the US can best meet polar icebreaking requirements. USCG carries out the annual International Ice Patrol (IIP). The activities of the IIP are governed by treaty and US law to encompass only those ice regions of the North Atlantic Ocean through which the major trans-Atlantic shipping lanes pass. There remain other areas of ice danger where shipping must exercise extreme caution. Information concerning ice conditions is collected primarily by air surveillance flights and from ships operating in the ice area. All iceberg data, together with ocean current and wind data, are entered into a computer model that predicts iceberg drift. Every 12 hours, the predicted iceberg locations are used to estimate the limit of all known ice. This limit, along with a few of the more critical predicted iceberg locations, is broadcast as an “Ice Bulletin” from radio stations around the US, Canada, Europe and over the Worldwide Web for the benefit of all vessels crossing the north Atlantic. In addition to the Ice Bulletin, a radio facsimile chart of the area, depicting the limits of all known ice, is broadcast twice daily. USCG has begun the Arctic Domain Awareness (ADA) program to prepare for increased maritime activity as climate changes provide greater access to the Arctic. Understanding the Arctic Maritime Do¬main is part of a DOD and DHS effort to improve Maritime Domain Awareness (MDA) by developing an effective understanding of the global maritime domain and supporting effective decision-making as outlined in the National Strategy for Maritime Security. MDA includes both environmental condi¬tions and human activities that could affect maritime safety, security, the economy or environment. As MDA is expanded to the Arctic, there are likely overlaps in resource needs and sensors that could apply to both MDA/ADA and AON, and coordina¬tion of their activities will be mutually beneficial. The IIP works closely with the National Ice Center (NIC), a multi-agency operational center operated by the US Navy, NASA, NOAA and the USCG. The NIC mission is to provide the highest quality strategic and tactical ice services tailored to meet the operational requirements of Federal agencies. The NIC also coordinates and represents the many funding agencies and partners of the US Interagency Arctic Buoy Program (IABP). NIC also funds the coordinator of the program, and NSF supports IABP data management and coordination at the University of Washington. US buoy contributions to the IABP are funded by NOAA and the Office of Naval Research (ONR). NSF supports the fabrication and deployment of drifting ice mass balance buoys by the Cold Regions Research and Engineering Laboratory (CRREL), US Army Corps of Engineers.

Sea ice Oceanography
11. NOAA + NASA remote sensing of climate variables (NOAA + NASA remote sensing)

Both NOAA and NASA operate satellites with cover¬age of the Arctic region. The major observations and products are: 1. Daily, near real-time plots of surface, cloud, and radiative properties from AVHRR; 2. Near real-time MODIS and AVHRR polar winds; 3. Daily, near real-time plots of clear sky, low-level temperature inversions from MODIS; 4. Daily profile plots of Arctic temperature, humid-ity and winds; 5. Near-daily plots of surface winds over open water; and 6. Surface temperatures for land, sea and sea ice.

Climate Sea ice Atmosphere
12. NPS Aerosols

NPS monitors aerosols at Denali National Park and Preserve (DNPP) to calculate and track visibility trends (1988 to present). The aerosol program is part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Wet deposi¬tion has been monitored at DNPP (Site ID AK03) since 1980 as part of the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). In order to estimate dry deposition at DNPP (Site DEN417), weekly concentrations of sulfur and nitrogen compounds have been measured since 1998 as part of the Clean Air Status and Trends Networks (CASTNet). UV-B radiation has been monitored at DNPP since 1997 as part of the EPA UV-B Monitoring Program. The NPS Western Air¬borne Contaminants Assessment Project (WACAP) is currently evaluating water, snow, sediments, willow bark, fish, and moose tissue in a number of western US and Alaska national parks, including DNPP, for the presence of metals (including mercury) and organic compounds.

Pollution sources
13. Greenland Climate Network (GC-Net)

NASA and NSF support the Greenland Climate Network (GC-Net), a series of automatic weather stations that monitor conditions on the ice sheet.

14. NSSI Climate Change/Vegetation Change and Fire Regime in Tundra Ecosystems

In tundra areas of Alaska, we need to be able to ascertain that enough old-growth lichen-rich habitats remain for our caribou herds and that habitat diversity is maintained. Examination of long-term range monitoring transects previously deployed in remote tundra areas of Alaska on BLM lands show significant declines in available caribou forage lichens (which are highly sensitive to disturbance and slow-growing) for caribou and reindeer. Post-fire recovery of lichens may be prolonged or questionable under current climate conditions. The principal objective is to determine the magnitude of climate change impacts to tundra and boreal forest fire regime.

15. NSSI Stream Gaging Stations – Arctic National Wildlife Refuge

One station on the Tamayariak River measures tundra water flow. Another station on the Canning River measures flow from mountain discharge. Member of US Geological Survey National Water Information System. Tamayariak River, North Slope Borough, Alaska Hydrologic Unit Code 19060501 Latitude 69°51'55", Longitude 145°35'34" NAD27 Drainage area 149 square miles Gage datum 325 feet above sea level NGVD29 Location: Canning River, North Slope Borough, Alaska Hydrologic Unit Code 19060501 Latitude 69°52'55", Longitude 146°23'09" NAD27 Drainage area 1,930 square miles Gage datum 338 feet above sea level NGVD29

16. Arctic Observing Network (AON)

The overall goal of AON is to obtain data that will support scientific investigations of Arctic environmental system change. The observing objectives are to: 1. Maintain science-driven observations of environmental system changes that are already underway; 2. Deploy new, science-driven observing systems and be prepared for detection of future environmental system change; 3. Develop observing data sets that will contribute to (a) the understanding of Arctic environmental system change (via analysis, synthesis and modelling) and its connections to the global system, and (b) improved prediction of future Arctic environmental system change and its connections to the global system. Main gaps: Understanding Change and Responding to Change panels, has formed an AON Design and Implementation (ADI) Task Force. Composed of Arctic and non-Arctic scientists with experience and expertise in scientific observing and observing system operation and design, the goal of the task force is to provide advice to the scientific community and NSF on observing system/network design options that are available for identifying gaps that hinder scientific understanding of Arctic environmental system change. The task force will hold two workshops and address two main objectives: (1) evaluate the current SEARCH science questions and observing priorities, and recommend new priorities in the light of the environmental system changes that have occurred since 2005; and (2) evaluate observing system/network design methods, including pilot projects and small-scale tests. A publicly available report will be released in summer 2010. It is anticipated that the report will be of interest to the broader Arctic science community, the governments of the Arctic countries and other countries, NGOs and numerous stakeholders.

Environmental management Oceanography Atmosphere Human health Ecosystems
17. NASA Arctic activities

More information will be available in due course

18. NWS Arctic activities

More information about NWS observing activities will be available in due course Alaska Region Headquarters, Weather station list and real-time observations, Marine observations, Hydrology – Alaska Pacific River Forecast Center,

Climate Atmosphere
19. Russian-American Long-term Census of the Arctic (RUSALCA) (RUSALCA)

Observe changes in the ecosystem, fluxes of heat, salt, nutrients, CO2, and methane from the seafloor to the atmosphere above, as a function of changing climate in the Pacific Arctic region from the Bering Strait north to the high Arctic. Main gaps: So far unable to go far into the ice for investigation, although the geographical scope of the RUSALCA mission increased in 2009 because of the reduction of sea ice cover. (we were able to reach a northernmost site and to sample as far north as 77°30’N.

Oceanography Atmosphere Ecosystems
20. National Current Observation Program (NCOP)

The NCOP collects, analyzes, and disseminates observations and predictions of tidal currents for over 2,700 locations throughout the United States. The NCOP conducts annual tidal current surveys in various locations which deploy current meters for 30-90 days to acquire enough data to generate accurate tidal current predictions. Main gaps: NOAA maintains tidal current predictions at approximately 2,750 locations. However, there are little historical data north of the Aleutian chain, and those data are very old.  

Oceanography Human health Ecosystems