Sweden: projects/activities

Directory entires that have specified Sweden as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 41 - 60 of 228 Next
41. Sweden Macro Fauna Soft Bottoms + Embryogenes of Amphipod (Sweden Macro Fauna Soft Bottoms)

The subprogram, Macro Fauna Soft Bottoms, contains trend and aerial monitoring of soft-bottom fauna in the Gulf of Bothnia. It is conducted by Umeå Marin Research Center (UmU-M) and includes basic sediment investigation and assessment of oxygen concentration in bottom waters. The aim is to observe if, and in what way, the structure of the bottom macro fauna changes. Changes may indicate over-fertilization and oxygen stagnation. Embryogenes of Amphipod (Monoporeia affinis and Pontoporeia femorata) and its environment is studied at 7 sites in Baltic Proper and 5 sites in Gulf of Bothnia as an indicator species of bottom sediment quality.

Ecosystems
42. The Hydrological Base Network at SMHI

Stream water is assessed in two programs in which SMHI conducts most river discharge observations. It has 155 discharge stations in northern Sweden that belong to the Base Hydrological Network (Fig. 5, Table 6, #3.1). SMHI reports daily discharges in 46 rivers north of 60°N to BALTEX (Table 6, #3.2). The size distribution of the catchments is characterized as minimum 30 km2, median 6 400 km2 and maximum 33 930 km2, and the relative area of lakes as minimum 3%, median 6.4%, and maximum 21%. SLU is in charge of the water quality and SFB of the test fishing program. In the River Mouth Survey the goal is to estimate the element discharge from Sweden to the sea. Monthly sampling is conducted in 23 rivers and the samples are analyzed for pH, conductivity, NH4, NO2, NO2+NO3, Kjeldahl-N, Tot-N, Tot-P, PO4, TOC, Si, absorbance (on filtered and nonfiltered samples), KMnO4, Fe, Mn, alkalinity, Ca, Mg, Na, K, SO4, Cl, F, Cu, Zn, Cd, Pb, Cr, Ni, Co, Ni, V, As, Al, Hg. The primary goal of the Trend Streams program is to build time series to detect eventual environmental changes. The streams are of quite different sizes, with drainage basins from 1 to 10 000 km2. For water chemistry 37 streams are sampled monthly and the samples analyzed as for the River Mouth Survey. Out of the 37 streams 27 are selected for yearly sampling of bottom fauna and benthic diatoms, and in turn electrical test fishing is performed once per year in 16 of these.

43. Sweden National Lake Survey

The National Lake Survey (Table 4, #7.4) gives an aerial coverage of water quality in Swedish lakes. Water samples are taken at 0.5 to 2 m depth in a total of 1841 lakes in northern Sweden in a 6-year rotation with about 350 lakes per year. The samples are taken after the lake’s complete overturn in the autumn. For water chemistry the samples are analyzed for 20 variables (temperature, pH, NH4, NO2+NO3, Tot-N, Tot-P, PO4, TOC, Si, absorbance, Fe, Mn, alkalinity, Ca, Mg, K, Na, SO4, Cl and F) and less frequently for 9 trace metals (Cu, Cd, Pb, Cr, Ni, Co, Ni, V, Al). In the Trend Lakes program the sampling is more frequent (4 times per year for water chemistry and one time per year for bottom fauna, phytoplankton and macrophytes). The aim of the program is to build time series to detect environmental changes due to e.g. Climate change or large scale changes in deposition load. In this program about 40 lakes are sampled in northern Sweden. For water chemistry the samples are analyzed for the same elements as in the National Lake Survey. In addition test fishing is conducted in 2 of the lakes per year. Invented variables: Temperature, pH, NH4, NO2-NO3, Tot-N, Tot-P, PO4, TOC, Si, Absorbance, Fe, Mn, Alkalinity, Ca, Mg, K, Na, SO4, Cl, F, and trace metals Cu, Cd, Pb, Cr, Ni, Co, Ni, V, Al Sampling depths: Sampling at 0.5 - 2.0 m depth during fall circulation Network layout: The network is based on EMEP-squares and gives between 19 and 134 lakes sampled per county every year. Sampled lakes rotation: About 350 lakes are sampled in northern Sweden every year in a six-year -periodical program. Out of 4824 lakes sampled in the country 2112 are situated in northern Sweden.

freshwater
44. SGU network for groundwater chemistry

Since the late 1960s, the Swedish Geological Survey (SGU) has operated a groundwater network comprising about 400 wells throughout Sweden. The groundwater level is measured twice per month, resulting in maps (published monthly) of the groundwater situation in the country (Table 6, #7.1). Chemical analyses are performed twice per year in 30 wells selected from the network (Table 6, #7.2). The groundwater sampling network for water quality called “reference stations – groundwater” is split in two parts: one called trend stations (comprised of 80 stations that are sampled a couple of times per year) and the other called periodical stations (comprised of a large number of stations sampled once every 6 years). In total, 528 stations are sampled every 6 years, most of which are natural springs and the rest are groundwater observational wells and municipal water supplies (Table 4, #7.1). Half of the trend stations are situated in small aquifers, e.g. till deposits, while the other half are situated in large aquifers such as sand and gravel deposits in eskers and fossil deltas. Groundwater from all stations is analyzed according to a base program. In addition, complementary analyses are performed for a number of trace elements (Cu, Zn, Pb, Cd, Cr, Ni, Co, As, V and in some cases Hg). SGU operates a network for groundwater comprising about 400 stations for groundwater level and 30 stations for groundwater quality. This network is financed by SGU and data are not freely available. SGU also operates a environmental monitoring network for groundwater comprising 80 trend stations visited a couple of times per year and 528 periodical stations that are only visited oncce per six years. This monitoring network is financed by SEPA and data can be downloaded from SGU hompage. Water from the reference stations are analyzed for the following chemistry: All stations: Temperature, pH, PO4-P, Tot-P, conductivity (EC), NH4-N, NO3-N, NO2-N, Tot-N, TOC, F, Cl, Alk/Ac, SO4, Ca, Mg, Na, K, Fe, Mn, Si and Al Further analysis for periodical stations are the following metals Cu, Zn, Pb, Cd, Cr, Ni, Co, As, V and Hg and the organic compounds trichloretylen, tetrachloretylen

45. Sweden phenology

Since 2007, SLU has conducted daily phenology observations on forest trees (birch, Scots pine, and Norway spruce) during the spring at four sites in northern Sweden (Fig. 5, Table 5, ##7.2, 8.2, 13.2, and 14.2) In addition, the phenology of 15 plant species is observed at two sites and of birch at one site, all at Abisko (Table 5, #1.11, and 1.12).

Ecosystems
46. ICP Forest Program in Sweden

At present, Sweden has 4 integrated monitoring (IM) sites that are part of a European network on integrated monitoring with an extensive measurement program. One of these sites, Gammtratten, situated in central Västerbotten, monitors several variables (Table 4, #3.2). SGU conducts groundwater sampling at 3 of the sites. In total, 18 stations are sampled 4 times per year. A program for comprehensive information on the state of forests in Europe was launched 1985 in response to acid deposition and fear of forest decline. The program was named the European ICP-Forest Program (International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests operating under the UNECE Convention on Long-range Transboundary Air Pollution, Table 6, #5). ICP-Forest monitors forest conditions in Europe and operates at two levels of intensity. Level I is a systematic 16 km by 16 km transnational grid having around 6 000 observation plots in Europe. Level II is comprised of around 800 sites in selected forests throughout Europe with more intense observations. The Level I measurements consist of three parts: crown condition assessment, soil condition assessment, and foliar survey. The crown condition assessment includes the degree of defoliation, discoloring, and damage visible on trees. The soil condition assessment addresses possible nutrient imbalances caused by, e.g. acid deposition. The foliar survey assesses foliar nutrient concentrations, because changes in environmental conditions may affect foliar nutrient concentrations. The Swedish contribution is made by the national forest inventory (SLU-FRM), which estimates the degree of crown defoliation and discoloring on 700 permanent plots around the country. The Swedish Forest Agency (SST) organizes the Level II observational plots. They manage a program with more than 200 permanent plots throughout Sweden, on which they estimate forest vitality (several measures), forest growth, soil chemistry, and field vegetation. Of these plots, 100 are connected to the international network, and 20 are north of 60°N. Foliage chemistry is determined on 100 plots, deposition and soil water chemistry on 50 plots, air quality on 25 plots, and climate on 14 plots. The sampling intensity varies from once in 5 years to once per hour depending

Ecosystems Environmental management Pollution sources
47. Sweden Mass and energy exchange

At present there are about 12 micrometeorological tower sites north of 60°N in Sweden that use eddy covariance techniques to measure the exchanges of carbon dioxide, water vapor, energy, and at some sites methane between terrestrial ecosystem and atmosphere on a long-term and continuous basis (Table 5, ##5, 9, 11, 12, 15, 16–22). Among these tower sites, Norunda is the oldest and most complete complete (Table 5, #5). Three towers are in use at Rosindal, 70 km northwest of Umeå, in full-scale nitrogen and carbon dioxide experiments (Table 5, #12). In addition, one site is located at Zackenberg on Greenland (Table 5, #22). At the sites, data on vegetation, soil, and meteorological and hydrological conditions are also collected. The Swedish sites are integrated in the international Fluxnet program that assembles more than 400 eddy covariance sites around the world in an effort to better understand land surface – atmosphere interaction and its role in global change. The Swedish micrometeorological towers are presently financed by research councils, viz. Swedish Research Council (VR) and Formas, EU and university faculties. A European research infrastructure for flux measurements, the Integrated Carbon Observation System (ICOS) is being planned and includes Sweden as one of the participating nations.

Atmosphere
48. Swedish Bird Taxation (SFT) + Ottenby + Falsterbo

Bird populations are monitored as part of SEPA’s “Landscape” program. The Swedish bird census project determines, once per year, the species and number of birds at about 500 sites throughout the country (Table 4, #5.2). The Department of Zooecology, Lund University, organizes this census. Ottenby Bird Observatory on Öland is responsible for bird counting and ringing of small birds at Ottenby (Table 4, #5.3), a key location for migrating birds. From August to November the number and species of migrating birds are counted at Falsterbo in southern Sweden. The Department of Zoo-ecology, Lund University, organizes the census (Table 4, #5.4). Falsterbo is a key location for migrating birds of prey. The Swedish sea-bird inventory is taken place at about 100 sites where these birds spend their winter. Number and species are estimated in January of each year in the internationally coordinated program. The Department of Zoo-ecology, Lund University, conducts the Swedish part (Table 4, #5.5).

Ecosystems
49. Sweden Small Mammals Screening

Census on small mammals (voles, lemmings, and shrews) are conducted twice per year at 3 sites along the mountain chain (Table 4, #2.2) and at 2 sites in the forest landscape (Table 4, #3.3). Part of the material collected is sent to the environmental sample bank at the Swedish Museum of Natural History (NRM). The Department of Ecology, Environment, and Geosciences (UmU-EMG) at Umeå University is in charge of the program and analyzes the data.

Ecosystems
50. Sweden Metals in moose

Samples in moose (Table 4, #3.4) from Norrbotten and Jämtland counties (and 3 counties in southern Sweden) have been analyzed every autumn since 1996. The Swedish Museum of Natural History (NRM) organizes this work and stores some of the material, and the Swedish Veterinary Institute (SVA) performs chemical analyses on some of the tissues. Hunting associations organize much of the field sampling. Analyses: As, Cs, Cd, Cr, Co, Cu, Pb, Mn, Hg, Mo, Ni, Se, Sr, V, Zn. 2007 screening of organic compounds Sites: Norrbotten, Jämtland, Western Götaland, Jönköping, and Kronoberg Counties Intensity: Each autumn since 1980 (Grimsö), else from 1996

Pollution sources Ecosystems
51. Sweden Metals in Reindeers

Metals in tissue samples from reindeer are analyzed at 3 sites along the mountain ridge once per year. The Swedish Museum of Natural History (NRM) organizes this work and stores some of the material, and the Swedish Veterinary Institute (SVA) performs chemical analyses on some of the tissues. Reindeer samples are gathered once per year in connection with sluaghter. The samples are stored by NRM and on some material the National Veterinary Institute (SVA) make analyses. The program is part of SEPA:s program for monitoring in the mountains Analyses: Al, Ca, Co, Cr, Cu, Fe, Mg, Mo, Ni, Pb, V, Zn, Hg every year, PCB, dioxiner, DDT 1/5yr Sampling sites: Abisko, Ammarnäs, Funäsdalen Intensity: 1/year, at slaughter

Pollution sources
52. Metals in Mosses

An alternative for metal deposition measurements is to analyze their abundance in mosses since metals bind strongly to cation exchange sites in them. The concentration of metals in mosses would therefore act as an index for metal deposition. It is also assumed that uptake of most water and dissolved substances comes directly from precipitation; even if it has been shown that capillary transport of dissolved metals may be substantial. A national inventory of metals in mosses takes place at 5-year intervals (Table 4, #1.11). The two-to-three last years growth is identified and collected for chemical analysis ICP-AES and ICP-MS (As, Cd, Hg) Metals are adsorbed by mosses and metal concentration in mosses are therefore seen as a proxy for metal deposition. Moss species: Pleurozium schreberi, Hylocomium splendens Analyzed metals: As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, V, Zn Sampling sites: More than 700 sites over Sweden Time period: 1/5 years, first report 1975 and last reported 2005.

Ecosystems Pollution sources
53. Sweden tree limit monitoring

The tree limit has been monitored since 1915 at some sites in the Swedish mountains. The Department of Ecology, Environment, and Geosciences (EMG) at Umeå University, and Jämtland and Dalarna county boards monitored about 300 sites along the Scandinavian mountain chain for upper elevation trees taller than 2 m (Öberg, 2007).

Ecosystems
54. Sweden National Soil Inventory (RIS-MI) (RIS-MI)

Since 1962, the soil inventory (RIS-MI) and the national forest inventory (RIS-RT) have had a common field organization. The soil inventory investigates soils and collects soil samples for laboratory analysis. It includes several soil variables, e.g. soil type and soil classification, stone and boulder abundance, water relations, and soil chemistry. Simultaneously to the soil inventory, RIS–MI samples the field layer vegetation.

Soils
55. SEPA wetland inventory

At present SEPA’s program on wetlands is mainly a follow-up on wetland states, e.g. hydrological intactness and biodiversity. On the other hand, wetlands are part of the national inventory of landscape, NILS (see above). Wetland status is embraced by reporting obligations according to the EU Habitat Directive, and SEPA now uses high-resolution satellite data for operational monitoring.

Ecosystems
56. National Inventory of Landscapes in Sweden (NILS)

The National Inventory of Landscapes in Sweden (NILS) is a sample-based, nationwide environmental monitoring program focused on biodiversity. NILS started in full scale in 2003 and is based at the Department of Forest Resources Management, SLU. The program includes all terrestrial environments in Sweden, including agricultural land, wetlands, urban environments, forests, and mountains. NILS is based on 631 permanent sampling squares of 1 km x 1 km (Fig. 4). Within each square, 12 sample plots are field surveyed and an air photo interpretation is done for the whole area. A more extensive air photo interpretation within wider squares of 5 km x 5 km is also planned. The program will have a rotation time of 5 years. Results from NILS are intended to follow up on the national environmental objectives, land use status and change, and the distribution and area of different biotopes (Table 4, #5.1). The NILS program is divided into several subinventories, i.e. the general landscape (Table 4, #5.1), the mountains (Table 4, #2.1), arable land (Table 4, #4.6), and wetlands (Table 4, #6.3).

Ecosystems
57. Sweden - Satellite data-based estimates of clear felling (Sweden)

Swedish forestry practice includes a final clear felling after a rotation of up to about 100 years. To follow up on cutting permits, the Swedish Forest Agency (SST) annually maps all new clear felled areas, using satellite image data from the present and the previous year. This practice, carried out by a government agency, also creates a yearly nationwide database with SPOT or similar satellite image data, which has created the base for the above mentioned SACCESS national satellite data archive

Ecosystems
58. kNN-Sweden

SLU combines the spectral information from SPOT, or similar satellite image data, with the field data information from the national forest inventory plots. The result is a nationwide raster database (pixel size 25x25 m) where each grid cell is coded with the stem volume for the major tree species categories (pine, spruce, deciduous), and tree height. The product, which is called kNN-Sweden after the algorithm used, is repeated every fifth year, starting with images from year 2000. The kNN database can be downloaded free of charge from http://skogskarta.slu.se/

Ecosystems
59. Sweden permafrost monitoring

Increasing temperature in the Arctic will increase the soil temperature and decrease the area covered by permafrost. Depending on the situation, microbial decomposition of stored soil organic carbon will increase and release carbon dioxide and eventually methane, two greenhouse gases that may accelerate climate change. Some international programs study permafrost development. At 1540 meters altitude in Tarfala, temperature is measured in one borehole down to 100 m and another down to 15 m below soil surface in the Permafrost and Climate in Europe (PACE) program coupled to the Global Terrestrial Network for Permafrost (GTNP) (Table 5, #2.5). Four more shallow, boreholes near Abisko are suggested candidates for PACE, one managed by Luleå Technical University and three managed by Lund University (Table 5, #1.21). Abisko Research Station carries out manual sonding of the active permafrost layer at Stordalen, an activity on behalf of Geobiosphere Science Center (CGB), Lund University and part of the Circumpolar Active Layer Monitoring (CALM) (Table 3). The active layer has been monitored at 11 sites along an 80 km east-west profile from 1978 to 2002. Eight of these were bog sites situated in a transect from the dry and cold east to the milder and wetter west, all at approximately 390 m altitude. Permafrost monitoring started in 1972 at Kapp Linné, Svalbard, by the Geobiosphere Science Center (CGB), Lund University (Table 5, #23), and was reported for the period 1972 to 2002. Soil moisture and soil temperature were also monitored. The 10 monitoring sites differed in vegetation cover, elevation, substrate, active periglacial processes, and distance to the sea.

60. Sweden lake and river ice monitoring

The earliest record of lake ice break-up in Sweden is from as early as 1701, when the ice on Torne River at Haparanda melted on May 31st. Since then SMHI has successively extended the ice observation network. By 1900 the network included about 150 sites, and by 1950 it included over 320 sites (Table 6, #2). By 1950, observations had been terminated at only 9 sites. During the following 50 years 72 new sites were added to the network while observations were terminated at 255 sites. The reason for the extensive network during the latter nineteenth century and the early twentieth century was the use of frozen lakes and rivers for transportation, but also the need to know when spring activities, e.g. floating timber, could commence. The ice broke up on Torne River at Haparanda, on average, on May 20th during the eighteenth century, on May 17th during the nineteenth century, and on May 10th during the twentieth century, indicating a long-term trend of earlier lake ice break up.