Norway: projects/activities

Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 21 - 40 of 130 Next
21. Monitoring of zooplankton biomass and composition in the Barents Sea

This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Tor Knutsen, ) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Determine amount and distribution of zooplankton biomass (in three size fractions). 2. Describe abundance of dominant zooplankton species. 3. Determine annual variation in zooplankton biomass and feeding conditions of planktonfeeding fishes. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO).

22. Monitoring of ocean climate of the Barents Sea

This is a cooperation between Institute of Marine Research (IMR) in Norway (Contact person Randi Ingvaldsen, and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: 1. Describe water mass distribution and properties 2. Document ocean climate variability as part of long time series 3. Relate ocean climate variability to variation in recruitment, growth, condition and size of commercial fish stocks Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. The current meter moorings are shifted once a year.

23. Radioactivity in the Marine Environment (RAME) and Monitoring of terrestrial and freshwater systems (RAME)

- To document levels and trends of radioactivity in the environment - Basis for reports to international organisations (mainly OSPAR) - Inform authorities, media and the public in general about status of radioactive contamination

Hydrography Oceanography Ecosystems
24. Coordinated Environmental Monitoring Programme (CEMP) (CEMP)

To assess the effects, levels and trends of hazardous substances in marine sediment and biota. The indicator organisms include blue mussel, dogwhelk, cod and plaice. The monitoring sites are mostly coastal and the frequency of sampling is mostly annually for biota and every 10-15 years for sediment. Main gaps: Protected areas and offshore monitoring are generally not included under the CEMP but offshore monitoring is somewhat covered by. IMR/NIFES programmes. Not all substances under EU’s Water Frame Work Directive and Marine Strategy Directive are monitored regularly. Biological effects monitoring is lacking except for IMPOSEX investigations.

25. Riverine inputs and direct discharges to Norwegian coastal waters (RID) (RID)

The main objective of the RID monitoring programme is to monitor and assess the riverine and direct inputs of selected pollutants to the Norwegian part of OSPAR’s Maritime Area. The entire study area (i.e. main Norwegian land area) is divided into the following four coastal areas/sub-regions: Skagerak, North Sea, Norwegian Sea, and Barents Sea. The monitoring in rivers is carried out in 10 so-called ‘main rivers’ with monthly sampling; and 36 so-called ‘tributary rivers’ with sampling 4 times a year. The catchment areas of these 46 rivers constitute about 50% of the Norwegian area draining to the Convention waters. The inputs from the remaining areas are estimatedby the Teotil model. This includes direct discharges from wastewater treatment plants, industry and fish farming.

26. Monitoring environmental pollutants in freshwater fish in Norway

To detect changes in concentrations of POPs in freshwater fish due to changes in atmospheric or local anthropogenic input.

27. Monitoring of long-range transboundary air pollution, hazardous substances in lakes

To detect changes in concentrations of metals and POPs in lake sediments

28. Monitoring of long-range transboundary air pollution, effects in water

To detect changes in concentrations of chemical parameters in surface waters (rivers and lakes) related to changes in anthropogenic deposition input from longrange transboundary air pollution, in particular sulpur and nitrogen. The results are used as a basis to understand the biological responses to changes in acid deposition input.

29. Air deposition of heavy metals in Norway – Monitoring in mosses

Survey trends in deposition of long range transported heavy metals and other elements in Norway. For this purpose concentrations in mosses are measured. In year 2000 and 2005 extra samples were taken in areas with metallurgic industry to map the local level of deposition.

Atmosphere Ecosystems
30. Whole body measurements on reindeer herders in Finnmark, Norway

Elevated levels of 137Cs caused by previous atmospheric nuclear weapons tests fallout and the Chernobyl accident have been observed in Finnmark, Northern Norway. Due to the large consumption of potentially contaminated reindeer meat, whole body measurements of 137Cs levels in reindeer herders have been performed since 1965.

Radioactivity Indigenous people Long-range transport Radionuclides Exposure Arctic Reindeer 137Cs Whole body measurements Human health Human intake
31. Contaminants in Polar Regions – Dynamic Range of Contaminants in Polar Marine Ecosystems (COPOL)

The IPY-project ‘COPOL’ has a main objective of understanding the dynamic range of man-made contaminants in marine ecosystems of polar regions, in order to better predict how possible future climate change will be reflected in levels and effects at higher trophic levels. This aim will be addressed by 4 integrated work packages covering the scopes of 1) food web contaminant exposure and flux, 2) transfer to higher trophic levels and potential effects, 3) chemical analyses and screening, 4) synthesis and integration. To study the relations between climate and environmental contaminants within a project period of four years, a “location-substitutes-time”-approach will be employed. The sampling is focussed towards specific areas in the Arctic, representing different climatic conditions. Two areas that are influenced differently by different water masses are chosen; the Kongsfjord on the West-coast of Spitzbergen (79N, 12 E) and the Rijpfjord North-East of Svalbard (80N, 22 E). The main effort is concentrated in the Kongsfjord. This fjord has been identified as particularly suitable as a study site of contaminants processes, due to the remoteness of sources, and for influences of climatic changes, due to the documented relation between Atlantic water influx and the climatic index North Atlantic Oscillation (NAO). The water masses of the Rijpfjord have Arctic origin and serves as a strictly Arctic reference. Variable Atlantic water influx will not only influence abiotic contaminant exposure, but also food web structure, food quality and energy pathways, as different water masses carry different phyto- and zooplankton assemblages. This may affect the flux of contaminants through the food web to high trophic level predators such as seabirds and seals, due to altered food quality and energy pathways.

Biological effects Organochlorines Heavy metals Fish Climate variability Long-range transport Climate Contaminant transport Climate change Exposure Arctic Persistent organic pollutants (POPs) Local pollution Seabirds Food webs Ecosystems

TransCat main goal is the creation of a Decision Support System (DSS) for optimal water management of transboundary catchments, in context of the implementation of the EU Water Framework Directive.

International water management
33. Marine food webs as vector of human patogens

Marine foodwebs as vector and possibly source of viruses and bacteria patogenic to humans shall be investigated in a compartive north-south study. Effects of sewage from ships traffic and urban settlements, on animals of arctic foodwebs will be studied.

Pathways Biological effects Hydrography Fish Discharges Pollution sources Environmental management Contaminant transport Terrestrial mammals Shipping Polar bear Exposure Arctic Local pollution Seabirds Shellfish Food webs Waste Human health Human intake Marine mammals
34. Long-term effects of offshore discharges on cold water zooplankton: establishing a test system for chronic exposure to offshore discharges

During the last decade the concern regarding environmental effects of the offshore industry has shifted from effects of drilling discharges on benthic communities, towards a stronger focus on the water column and effects on the pelagic ecosystem. At the same time, oil and gas development is expanding in the Norwegian and Russian sectors of the Barents Sea. In this regard, a project has been initiated to look at responses of especially Calanus spp. and other copepod species to long-term, sublethal exposure to selected offshore discharges and discharge components, as well as accidental oil spills. Calanus spp. is ecologically the most important zooplankton species along the Norwegian shelf and in the Barents Sea. A laboratory based facility for culture through several generations is being developed through this project. In addition, the impact of oil compounds on the cold-water and arctic Calanus species-complex will be examined by carrying out a series of laboratory (some at Ny Ålesund) and ship based experiments. The response parameters will include both behavioral (feeding, mate finding, avoidance) and physiological (mortality, egg production, development rates, oxygen consumption and assimilation efficiency) parameters. The ultimate outcome of this research is expected to be a supporting instrument for ecological risk assessment of offshore discharges, which is highly relevant both to the North Sea, the mid-Norway shelf and the Barents Sea.

Pathways Biological effects Biology PAHs Pollution sources Environmental management Contaminant transport Petroleum hydrocarbons Exposure Arctic Oil and Gas
35. Physiological studies of arctic birds

The activity in 2004 will be devoted to two projects: First, we will perform banding of breeding adult Kittiwakes in the Kongsfjord area. The Kittiwakes will in addition to standard metal rings be equipped with a colour-ring with a combination of letters and numbers, making identification at a distance easier. This banding programme was initiated in 2003 and will in the coming years be used to calculate local survival rates of the Kittiwakes breeding the Kongsfjord area. Secondly, we intend to place a number of breeding boxes for Snow Buntings in the Ny-Ålesund area. In the coming years this will make access to breeding adults and nestlings easier enabling physiological studies. These studies will focus on various aspects of metabolism and energetics of the breeding population of Snow Bunting on Svalbard, and we also want to compare the physiology of the Svalbard population with the breeding populations on ’mainland’ Norway.

Biology Populations Seabirds Reproduction
36. ACD coastel erosion

The erosion rates at some selected coastal cliffs near Ny-Ålesund will be measured by the use of terrestrial photographs and photogrammertry. testing the method itself is a part of the study. Thsi part is a part of my doctoral work and is in the international Arctic Coastal Dynamics project. The fisrt part of the fieldwork was carried out in 2002.

37. Contaminants in polar fox

Arctic animals utilize periods with high food availability for feeding and lipid deposition, whereas they rely on stored lipids during unfavorable periods. Hence, many arctic inhabitants exhibit profound seasonal cycles of fattening and emaciation. In the Arctic, feeding is associated with fat deposition and contaminant accumulation. When lipids are mobilized, accumulated contaminants are released into the circulation. Consequently, blood contaminant concentrations may increase markedly and result in a redistribution of the contaminant(s) from “insensitive”, adipose tissues to sensitive organs, and increased contaminant bioavailability. Such variations complicate interpretations of pollutant toxicity, both in effect studies and in monitoring programs, and remains an important future reseach area. In the present study, we will use arctic fox (Alopex lagopus) as a model species for investigating tissue distribution and bioavailability of organochlorine contaminants (OCs) in relation to natural variations in lipid status (field study). These data will be supplemented and validated through a contamination study with blue fox (A. lagopus), where the seasonal changes in lipid status of wild fox are simulated in the laboratory. In both the field and laboratory study, possible effects of OCs on steroid hormone synthesis, and plasma levels of hormones, vitamin E and retinol will also be assessed.

Biological effects Biology Organochlorines PCBs Arctic Persistent organic pollutants (POPs) Pesticides
38. Effects of UV radiation on lipids, fatty acids and nutritional quality of Arctic marine algae and zooplankton

This project investigates how solar UV radiation affects planktonic food webs in the Arctic by changing the nutritional quality of the lower trophic levels. UV radiation has been documented to lead to oxidation of poly-unsaturated fatty acids (PUFAs) in phytoplankton. These PUFAs cannot be synthesized de novo by zooplankton, but are key molecules for the marine pelagic food web. A combined approach was chosen with both sampling of field data (physical as well as biological) and experiments which were carried out during two field seasons in Ny Ålesund in 2003 (april/may) and 2004 (may/june). In 2004, the main part of the field work consisted of an outdoor experiment where phytoplankton was exposed to different irradiation regimes, using the natural sunlight. Algae from all different treatments were used for feeding zooplankton in order to trace the transfer of irradiation-induced changes of the fatty acid composition in phytoplankton to the next trophic level. A number of additional parameters will be analysed as well, combined with the results of an extensive measurement series of both PAR- and UV light. The experiment was carried out on the old pier (Gamle Kaia), while the laboratory part took place in the Italian station ‘Dirigibile Italia’.

Calanus glacialis Biological effects UV radiation fatty acid composition trophic transfer diatoms lipids
39. Environmental effects of offshore oil activities: experimental tests of petroleum-associated components on benthos at community, individual, and cellular levels

This project will examine benthic processes in arctic and mid-latitude regions in order to derive specific conclusions on the sensitivity of benthic organisms and communities to acute spills of petroleum-related chemicals and routine releases of drill cuttings. We will carry out a series of controlled experiments on whole sediment communities and individual benthic organisms with additions of drill cuttings and petroleum-associated contaminants, arriving at a set of hypotheses on the likely impacts on the benthos of petroleum production activities at higher latitudes. A series of testable hypotheses will be formulated based on an examination of real-world monitoring data sets collected under Norway’s Petroleum Regional Monitoring Programme and results of mesocosm experiments performed previously at the Norwegian Institute for Water Research (NIVA) Station at Solbergstrand. These data sets will be examined in order to identify the geographic scope of responses to petroleum industrial activities. Through this work, we intend to propose procedures to improve the interpretation of benthic monitoring data for diverse environmental regions in Norway. The project is linked to several on-going NFR projects within the Polarklima programme. By involving a Ph.D. student the project will advance the education and training of young scientists in the field of biological effects studies related to petroleum development and exploration activities.

Biological effects PAHs Petroleum hydrocarbons Arctic Sediments Oil and Gas
40. Englacial draining on Kongsvegen

Englacial draining on Kongsvegen

Glaciers Climate change