Norway: projects/activities

Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 101 - 120 of 130 Next
101. Monitoring nutrients

As part of plankton and fisheries surveyes samples for nutrients measurements are collected. This is part of our routine monitoring of the marine environment.

102. Fisheggs- and larvae - The Barents Sea

Monitor the abundance of Capelin larvae in the Barents Sea. Report to the Northern pelagic Blue Whiting WG in ICES

103. Simulation Scenarios for Potential Radioactive Spreading in the 21st century from Rivers and External sources in the Russian Arctic Coastal Zone (RADARC)

1) To perform simulation scenarios for the 21st century, including global warming scenarios, of potential radioactive spreading from sources in the Russian Arctic coastal zone and its impact on Barents, Greenland and Norwegian Seas and the Arctic Ocean; 2) To update the environmental and pollution data base of the Arctic Monitoring and Assessment Program (AMAP); 3) To assess, select and define the most probable simulation scenarios for accidental releases of radionuclides; 4) To implement a Generic Model System (GMS) consisting of several nested models designed to simulate radionuclides transport through rivers, in the Kara sea and in the Arctic ocean / North Atlantic; 5) To carry out simulation studies for the selected "release" scenarios of radionuclides, using various atmospheric forcing scenarios; 6) Assess the impact on potential radioactive spreading from sources as input to risk management.

Shelf seas Pathways Sources Hydrography Catchment studies Radioactivity Long-range transport Pollution sources Sea ice Contaminant transport Radionuclides Modelling Ice Oceanography River ice Arctic Local pollution GIS Sediments
104. Study of influence of land-based sources of radionuclides on radioactive contamination of Kara sea through Ob- and Yenisey river systems

To assess potential levels of radionuclides input into the Kara sea from existing and potential sources of technogenic radioactivity, located on the land in the Ob- and Yenisey rivers watersheds. Specific Objectives * To reveal and estimate a) most hazardous technogenic sources of radioactive contamination in the Ob- and Yenisey watersheds and b) the most possible and dangerous natural and technogenic (antrophogenic) situations (in the regions of these sources) that may result in release of radionuclides into the environment and may lead to significant changes in the radioactive contamination of the Kara sea * To estimate parameters of radionuclides (potential amount, composition, types etc.) under release to the environment from chosen sources as a result of accidents as well as during migration from the sources to the Kara sea through river systems * To set up a dedicated Database and a Geographic Information System (GIS) for modelling transport of radionuclides from the land-based sources to the Kara sea * To develop and create a dedicated model tool for simulation of radionuclides transport from land-based sources through Ob- and Yenisey river systems to the Kara sea

Pathways Hydrography Catchment studies Radioactivity Long-range transport Pollution sources Sea ice Contaminant transport Radionuclides Modelling Ice Oceanography River ice Arctic Local pollution GIS Data management Ocean currents
105. Monitoring the Atlantic inflow to the Barents Sea

To monitor the inflow of salt and heat to through the Barents Sea to the Arctic Ocean.

Climate variability Climate change
106. Monitoring climate variability in the Barents Sea

This is an ongoing activity for monitoring variability in temperature and salinity in Barents Sea

Climate variability Climate change Oceanography
107. Variation in space and time of cod and other gadoids: the effect of climate and density dependence on population dynamics

To increase the understanding of temporal and spatial dynamics of cod and other commercial gadoid species, including the influence of environmental variability on population parameters, and make this knowledge available in assessable form for fisheries management.

Climate variability Climate change
108. Contaminants in marine sediments, Svalbard 1997

Surface samples collected around Svalbard in 1997 have been analysed for total content of heavy metals, Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs) and a selection of pesticides. Sample localities have been selected to include areas not covered by previous investigations. Based on the data set and results from previous expeditions in the area, contamination levels as well as potential sources for the pollutants are discussed. The PAH levels for most stations are moderately elevated with a high contribution of aromatic hydrocarbons associated with petrogenic sources. Hence the dominant sources for the PAHs is most likely derived from petroleum seepage and or coal mining. Long-range transport of aromatics associated with anthropogenic input is a minor component of the observed PAH levels. The highest concentration of PAH is found in Storfjorden with a value higher than the elevated concentrations earlier reported from the south-eastern Storfjorden and over the Central Bank. The concentration levels of the metals arsenic, lead, chromium and nickel were moderately elevated. Because of sparse information on the natural geomorphology, background metal concentrations are not known for this area. Hence, no quantitative comparison of natural and anthropogenic inputs for metals can be made. However, the most dominant source is assumed to be natural and related to the geological conditions in the area. All PCB levels were low, suggesting a dominant influence of long-range transport of these compounds to the area. Pesticide data showed low contamination of all compounds and suggests a predominant long-range atmospheric source for these pollutants.

Pathways Sources Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Pollution sources Contaminant transport Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Sediments Pesticides Oil and Gas
109. Monitoring the Atlantic Inflow toward the Arctic (MAIA)

The overall objective of MAIA is to develop an inexpensive, reliable system based on coastal sea-level data for monitoring the inflows of Atlantic Water to the northern seas. Available observation systems, including stan-dard tidal stations, will be used to obtain transport estimates with a time resolution of less than a week and show that the method is generic and can be applied to a similar monitoring of other regions.

Long-range transport Climate Sea ice Ice Oceanography Arctic Ocean currents
110. Ellasjøen, Bear Island - A mass balance study of a highly contaminated Arctic area

In 1994, analyses of sediments and fish from Lake Ellasjøen on Bear Island revealed a surprising scenario. The analytical results indicated some of the highest values of the contaminants PCB and DDT in freshwater sediments and fish ever found in the Arctic. The 1994 results were based on limited amounts of samples. During 1996 and 1997 there were carried out new sampling and analyses of several samples. These results verify the results found in 1994. Since the POP-patterns found deviate considerably from the typical patterns expected for local contamination, no local source can be assumed to be responsible for the high POP values found. Thus, the questions that need to be addressed include the source of these contaminants, the transport pathways that deliver these contaminants to this site, total deposition and finally contaminant fate including biological uptake and effects. Previous investigations from the early 80’s on high volume air samples carried out at Bear Island revealed several long-range transport episodes from Eastern Europe. The overall objective of this project is to contribute significant new information to the understanding of contaminant pathways in the Arctic hydrosphere and to provide a better understanding of contaminant focusing in a sensitive polar environment. This will be accomplished through the development of a comprehensive mass balance study of the atmospheric loadings of PCBs and other contaminants to the Lake Ellasjøen watershed to determine the seasonal importance of atmospheric deposition on a remote polar island. Further, effort will be directed at assessing the relative importance of various source regions of contaminants to the island through an evaluation of contaminant signatures and back trajectories of pollution events.

Pathways Organochlorines PCBs Long-range transport Pollution sources Contaminant transport Modelling Arctic Persistent organic pollutants (POPs) Pesticides Atmosphere
111. Contaminants in marine sediments and organisms from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg, northern Norway 1997 - 98.

Levels of selected contaminants have been determined in sediment, blue mussel, seeweed and fish from harbour areas in Harstad, Tromsø, Hammerfest and Honningsvåg in northern Norway. The following contaminants were included in the study: PAH, PCB, 5CB, HCB, OCS, HCH, DDT, DDE, DDD, TBT, Cd, Cu, Hg, Pb, Zn and Li. A few samples were also analysed for dioxines (PCDD and PCDF), non-ortho PCBs and PCN. The results were compared with the Norwegian State Pollution Control Authorities classification system for marine sediments (Molvær et al. 1997). Elevated (and in most cases very high) levels of most of the measured contaminants were found in all the investigated harbour areas.

Organochlorines PCBs Heavy metals Fish PAHs Petroleum hydrocarbons Persistent organic pollutants (POPs) Local pollution Dioxins/furans Sediments Pesticides Human intake
112. Transfer of organic pollutants from the abiotic environment to the lowest tropic levels of the ice associated food chain

The aim of the project is to detrmine the content of organic contaminants in sea ice (including dirty ice), sea water (particulate and dissolved), snow, ice algae and phytoplankton collected in the marginal ice zone of the Barents Sea and in Fram Strait, and to calculate bioconcentration factors from the abiotic compartments to the lowest trophic levels of the food chain. Silicate measurements were included in the Fram Strait as water mass tracer. The Barents Sea represents an area influence mainly by first year ice with sea ice formed in the area and or in the Kara Sea, and and strongly influenced by the inflowing two branches of water of Atlantic origin. Samples were collected on a transect along the ice edge and at two transects into the ice. The stations across the Fram Strait were taken in regions affected by water masses and sea ice from differents regions and age. In the western sector, the upper water column was influenced by the inflowing west Spitsbergen current of Atlantic origin and mainly with first-second year ice, while the easter station was influenced by outflowing water from the Arctic Ocean and multiyear sea ice of more eastern origin.

Pathways Organochlorines PCBs PAHs Long-range transport Pollution sources Sea ice Contaminant transport Exposure Arctic Persistent organic pollutants (POPs) Local pollution Ice cores Food webs Pesticides Ecosystems
113. Radioecological Investigation of Kola Fjord

To investigate the impacts of Russia's military and civilian nuclear activities in the Kola Bay and adjacent areas of the northwest Arctic coast of Russia.

Sources Organochlorines PCBs Heavy metals Fish Radioactivity Discharges Spatial trends Pollution sources Contaminant transport Radionuclides Modelling Exposure Arctic Persistent organic pollutants (POPs) Local pollution Geochemistry Food webs Sediments Pesticides Ecosystems
114. Atmospheric mercury at Ny-Ålesund, Svalbard

To see whether the features in the annual cycle of mercury is a local phenomena for Alert in the Canadian Arctic or also apply to larger ares in the Arctic. To quantify the concentrations/depositions of biological available mercury (reactive gaseous mercury and particulate mercury) in the Arctic environment during polar sunrise

Atmospheric processes Mercury Heavy metals Arctic Atmosphere
115. Global Emission Inventory for Hg

Our knowledge of mercury fluxes on a global scale is still incomplete. Estimates indicate that Europe and North America contribute less than about 25 % to the global anthropogenic emissions of the element to the atmosphere. The majority of the remaining emissions originate from combustion of fossil fuels, particularly in the Asian countries including China, India, and South and North Korea. Even less and very controversial information is available on emissions of mercury from natural sources, including volatilization of the element from terrestrial and aquatic surfaces. In general, it is assumed that natural emissions of the element are about 3000 t/year, thus contributing more 60 % to the total global emissions of mercury. However, much work needs to be done in order to verify the above estimate.

anthropogenic sources Sources mercury Emissions Arctic
116. Monitoring Heavy Metals and Organic Pollutants in Air at Svalbard

To monitor concentrations of heavy metals and persistent organic pollutants in air in the Arctic.

Ny-Ålesund Heavy metals Arctic air Long-range transport HM POP Svalbard Persistent organic pollutants (POPs) Zeppelinfjell Atmosphere
117. Environmental Assessment in van Mijenfjorden, Svalbard

The project aims to describe the environmental status of marine sediments in van Mijenfjorden. This to provide baseline data of contaminants and biodiversity, as well as for monitoring of eventual contamination from industrial activities (coal mining).

Biological effects Glaciers Biology Populations Discharges Spatial trends Environmental management Mining Oceanography Biodiversity Arctic Sediments Temporal trends Ecosystems
118. Environmental Protection from Ionising Contaminants in the Arctic (EPIC)

(1) Collate information relating to the environmental transfer and fate of selected radionuclides through aquatic and terrestrial ecosystems in the Arctic. (2) Identify reference Arctic biota that can be used to evaluate potential dose rates to biota in different terrestrial, freshwater and marine environments (3) Model the uptake of a suite of radionuclides, both natural and anthropogenic to reference Arctic biota (4) Develop a reference set of dose models for reference Arctic biota (5) Compile data on dose-effects relationships and assessments of potential radiological consequences for reference Arctic biota (6) Integrate assessments of environmental impact from radionuclides with those for other contaminants.

Pathways Biological effects Radioactivity Radionuclides Modelling Arctic
119. Benthic fauna in the Kongsfjorden, Svalbard

Investigation of benthic faunal communities for: taxon distribution/ biodiversity mapping; examination of effects of glacial and physical disturbance on community structure; relation between faunal structure and sediment contaminants.

Biological effects Glaciers Biology Mapping Physical disturbance Spatial trends Pollution sources Environmental management Climate change Biodiversity Arctic Sediments Temporal trends Ecosystems
120. Environmental assessment of the Isfjorden complex, Svalbard

The project aims to carry out an environmental assessment of the marine environment close to the three main settlements in the Isfjorden complex; Barentsburg, Longyearbyen and Pyramiden. The study comprises analyses of sediment geochemistry and soft-bottom benthic fauna. Attention is given to distinguishing atmospheric transport of contaminants from those arising from local sources.

Biological effects Sources Pollution sources Contaminant transport Mining Primary recipient Radionuclides Modelling Dioxins/furans Sediments Pesticides Waste secondary recipient Biology Organochlorines PCBs Mapping Heavy metals PAHs Long-range transport Discharges Spatial trends Environmental management Petroleum hydrocarbons Biodiversity Arctic Persistent organic pollutants (POPs) Local pollution Data management Temporal trends Ecosystems