Norway: projects/activities

Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 30 Next
1. Environmental Monitoring System for Svalbard and Jan Mayen

MOSJ (Environmental Monitoring of Svalbard and Jan Mayen) is an environmental monitoring system and part of the Government’s environmental monitoring in Norway. An important function is to provide a basis for seeing whether the political targets set for the development of the environment in the North are being attained

Atmosphere Ecosystems Human health Oceanography
2. Monitoring of oil and hazardous substances transport into and status in Norwegian coastal and oceanic waters

1. Monitor transport of oil and hazardous substances from all sources into Norwegian coastal and oceanic waters through modelling, calculations and measurements. 2. Monitor contaminant status in selected indicators (biota, sediments, water, air, acidification). 3. Collect samples for the Norwegian Environmental Sample Bank. 4. Supply data for the Norwegian Integrated Management Plans The programme is operated by Norwegian Institute for Water Research (NIVA) on behalf of NPCA in cooperation with Norwegian Institute of Air Research (NILU), Norwegian Institute of Marine Research (IMR), The National Institute of Nutrition and Seafood Research (NIFES) and Norwegian Radiation Protection Authority (NRPA). - Locations: Norwegian marine waters (see attached map). Main gaps: New stations/indicators/parameters will be included when needed in the integrated management plans

Atmosphere Ecosystems Oceanography
3. Synoptic meteorological observations, including radiosonde observations

Weather forecasting Main gaps: These observations are operational observations of METNO

4. Norwegian greenhouse gas monitoring

Continuous measurements of greenhouse gases and particles to monitor changes in the atmosphere. The programme is operated by Norwegian Institute of Air Research (NILU) on behalf of Norwegian Environment Agency. The Zeppelin Observatory is a major contributor of data on a global as well as a regional scale.The programme is decribed in the link.

Aerosol Arctic haze Atmosphere CH4 chlorofluorocarbons (CFC) CO2 Halocarbons trace gases CO
5. Monitoring of long range transboundary air pollution, greenhouse gases, ozone layer and natural ultraviolet radiation

The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change. 

AMAP Arctic air Arctic haze Atmosphere Atmospheric chemistry monitoring Atmospheric processes Carbon dioxide chlorofluorocarbons (CFC) Climate heavy metals methane Montreal & Kyoto Protocols PAHs PCBs POPs total gaseous mercury total ozone UV
6. Monitoring of broadband longwave and shortwave radiance at METNO Arctic stations

    These observations was originally funded through IPY projects (iAOOS-Norway and IPYTHORPEX), they are now maintained by the Norwegian Meteorological Institute. The observations at Bjørnøya started April 2008, Jan Mayen October 2008 and Hopen is scheduled 2009.

    Objectives are:

    1. Provision of algorithm tuning and validation data for EUMETSAT OSISAF radiative fluxes products (
    2. Provision of validation data for numerical weather prediction models.
    3. Generation of time series for use in time series analysis of atmospheric radiative conditions.
    4. Validation data for studying ocean and atmosphere heat exchange processes using bulk parameterisations.
    7. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation

    - Provide continuous measurements of high scientific quality of total ozone and solar ultraviolet radiation, to be used in assessments related to health- and environmental issues. - Provide data that can be used for short term forecasting and assessments of long term changes of total ozone and UV radiation. - Provide information to the public and scientific communitee on the status and the development of the ozone layer and UV radiation - Provide information to the public on sun protection when episodes of high UV Index may occur.

    8. Radnett – a national network for monitoring radioactivity in the environment

    The Norwegian Radiation Protection Authority is responsible for a nationwide network of 33 stations that continuously measure background radiation levels. The network was established in the years following the Chernobyl accident in 1986, and was upgraded to a new and modern network in the period 2006-2008. Additional stations were added in 2009. The purpose of the monitoring network is to provide an early warning if radioactive emissions reach Norway.

    Arctic Atmosphere Long-range transport Monitoring Radionuclides
    9. Air filter stations – a national network for monitoring radioactivity in the environment

    The Norwegian Radiation Protection Authority is responsible for a network of 5 air filter stations. These collect air samples through high density filters which are analyzed weekly by gamma spectroscopy. The network was established in the early 80s and is continuously updated. The purpose of the network is to assess the levels and composition of emissions from incidents and accidents. In addition, with the help of meteorological data, possible sources of release may be identified.

    Atmospheric processes Sources Radioactivity Radionuclides Atmosphere
    10. Screening of potential new hazardous substances in Norway

    The aim of the programme is to obtain a snapshot of the occurrence of potentially hazardous substances in the environment, both in regions most likely to be polluted as well as in some very pristine environments. The focus is on little known , anthropogenic substances and their derivates, which are either used in high volumes or are likely to be persistent and hazardous to humans and other organisms. If substances being screened are found in significant amounts this may result in further investigations or monitoring on national level. The results from the screening can be used when analysing possible environmental effects of the selected substances, and to assess whether they pose a risk to the environment or not. The data are used as input to EU chemical eavluation processes and to the UN Stockholm convention. The screening results are valuable when data on chemicals are needed within the REACH-system in Europe. Locations: Varying, according to properties of the substances. Samples from both hot-spot and remote sites are included. Geographical coverage (countries): Norway, including Bear Island and Spitsbergen and Norwegian seas. The Nordic countries are cooperating on screening information exchange and studies, see net site and brochure:

    Atmosphere Human health
    11. Radioactivity in air

    To monitor radioactivity in the air

    12. Air deposition of heavy metals in Norway – Monitoring in mosses

    Survey trends in deposition of long range transported heavy metals and other elements in Norway. For this purpose concentrations in mosses are measured. In year 2000 and 2005 extra samples were taken in areas with metallurgic industry to map the local level of deposition.

    Atmosphere Ecosystems
    13. Study of the ice phase in Arctic mixed-phase clouds and its influence on the cloud-radiation interaction (EPOPEE) within the international atmospheric research project ASTAR (Arctic Study of Tropospheric Aerosol and Radiation)

    The project EPOPEE is embedded in the international project ASTAR to study direct and indirect climate effects of aerosols and clouds in the Arctic. The particular goals of the project EPOPEE are to experimentally characterize the ice phase in Arctic clouds (including the ice phase) in situ, to study the aerosol-cloud as well as cloud-radiation interactions, and to develop adequate methods to validate remote sensing cloud parameters. In 2004 the project EPOPEE is mainly organized around in situ observations of detailed microphysical and optical cloud properties onboard the Polar-2 aircraft during the transition from polluted Arctic haze (observed especially in late winter, early spring months) to clean summer aerosol conditions. The transition from Arctic haze to clean summer conditions is quite sharp (a large amount of aerosols coming from Eurasian industrial areas accumulate over the Arctic and cover the Arctic by a layer of a smog-like haze of the size of the continent of Africa) due to a radical change in atmospheric transport patterns and is, thus, easy to identify. During Arctic summer, the high latitudes are then more or less “protected” from long-range transport of air masses from lower latitudes. The principal scientific objective of the project EPOPEE in 2004 will focus on studying the aerosol-cloud interactions with particular attention given to the ice phase nucleation in Arctic mixed-phase clouds. The interpretation of the instrumental observations will broadly benefit from a very close cooperation with the LaMP modelling group for theoretically coupling small-scale processes (cloud particle nucleation) with meso-scale dynamics. Furthermore, the project will focus on cloud-radiation interaction and the development of adequate methods to validate cloud parameters retrieved from remote sensing techniques. Therein, we will experimentally answer the question of how the different ice crystal shapes govern the scattering phase function of respective crystals. Moreover, the in situ cloud measurements will allow to develop an adequate strategy for the interpretation of remote sensing data from a depolarisation Lidar onboard the same aircraft (Polar-2).

    Atmospheric processes Arctic haze Long-range transport Climate Contaminant transport Climate change Modelling Arctic Atmosphere Ecosystems
    14. Protoniks

    Observation of proton aurora on the dayside with use of spectrometer operated simultaneous in Longyearbyen and Ny-Ålesund. Absolute calibration of the instrument located at The Sverdrupstation were performed in the period 9-13 January 2003.

    Atmospheric processes Geophysics Atmosphere
    15. Estimation of temperatures in the upper mesosphere using meteor decay times observed on 32.55 MHz and 53.5 MHz

    Objective 1: Proof of the possibility to estimate temperatures from meteor decay times using co-located, simultaneous meteor observations on two, well separated frequencies (32.55 MHz/SKiYMET radar and 53.5 MHz/ALWIN MST radar) without the assumption of a predetermined temperature gradient. The second method for determining temperature height profiles uses the direct measurement of the ambipolar diffusion coefficient in conjunction with pressure data to estimate temperatures. Pressure data from empirical models are often too unreliable, therefore pressure data derived from rocket-borne falling spheres measurements could be used for a reliable temperature determination. Objective 2: Proof of the method using co-located meteor radar measurements and falling sphere soundings conducted in 2002 at Andenes (69N) during the MaCWAVE campaign. It should be possible to estimate meteor temperature profiles in a height range between 82 km and about 94 km.

    Radar Atmospheric processes Geophysics Arctic Atmosphere temperature
    16. Simultaneous Measurements of Temperatures, Waves, and PSCs in the Polar Winter-Stratosphere on both Sides of the Scandinavian Mountains

    Polar stratospheric clouds play a key-role in polar ozone destruction. Cold temperatures in the vortex allow formation of these clouds. Depending on the PSC-type different formation-temperatures have to be reached. Synoptic temperatures do not always fall to these formation-temperatures, but waves in the atmosphere can lead to additional cooling of several 10 K, which allows PSC-formation. Whereas the wave-activity at the ESRANGE is very high due to hilly surrounding area, the orographic wave-activity at ALOMAR is expected to be rather small. Waves with long wavelengths will be present at both stations simultaneously. Coordinated measurements of temperature and aerosols will show both the large-scale wave-part and also the locally induced wave-part. Such measurements should allow identification of the different wavelngth scales and in addition contribute to a better estimate of the importance of wave-induced clouds for PSC-formation.

    PSC Atmospheric processes Ozone Climate variability Climate temperature profiles Atmosphere wave-activity
    17. Stratosphere-mesosphere intercomparison of ozone profil

    During the past years, atmospheric research in high latitudes has been focussed on processes causing ozone loss in the polar winter lower stratosphere1). Recent research efforts also dealt with regions up to the lower mesosphere, and studied the effects of charged particle precipitation on NO and ozone2)-5). However, the measurement techniques and hence the database for studying such processes in this altitude range are very limited. The Airborne SUbmillimeter Radiometer ASUR6),7) of the Institute of Environmental Physics of the University of Bremen has recently been equipped with a high-resolution spectrometer that will enable the retrieval of vertical profiles of ozone up to an altitude of about 65 - 70 km. Its measurement capabilities comprise also several other species of interest, especially NO. This makes the measurement technique particularly suitable for upper stratospheric/lower mesospheric studies. The lidar at ALOMAR is capable of measuring highly resolved vertical profiles of ozone up to an altitude of 60 km, thus giving the rare opportunity for intercomparison and validation studies in an altitude range reaching from the lower stratosphere to the lower mesosphere. Therefore we propose to perform simultaneous ozone measurements of the ASUR instrument with the ALOMAR lidar, supported by launches of ozone sondes.

    Atmospheric processes Ozone Geophysics radiometer Climate Arctic Atmosphere lidar
    18. Investigation of long periodic gravity waves and their possible sources in the vicinity of the Scandinavian mountain ridge

    The upper troposphere and lower stratosphere are strongly affected by the appearance of gravity waves with different scales. Due to the exponential decrease of the density with the altitude, the upward propagation of these waves is associated with an increase in their amplitudes. Associated with the wave breaking and with deposit of momentum and energy in the background flow, the dynamical and thermal structure at upper stratospheric and mesospheric heights are essentially influenced. However, their sources and the quantitative aspects of these processes are poorly understood at present. Here we are focussing on the investigation of long periodic gravity waves with periods of several hours and horizontal wavelengths of more than hundred kilometres. In contrast to the pure internal gravity waves, these waves are called inertio-gravity waves due to their influence by the rotation of the Earth, described by the Coriolis effect or by the inertial frequency.

    Atmospheric processes Geophysics ozon-profile Modelling Arctic temperature-profiles Atmosphere wind
    19. Ground-based observations of noctilucent clouds With the shortest possible wavelength (308 nm)

    Noctilucent clouds (NLC) remain a fascinating phenomenon of the upper atmosphere to study. The questions about the typical particle density and particle size distribution within a NLC are very prominent ones, to which a number of answers have been given, though some of the answers contradict each other. The parameters of particle size distributions can be derived from groundbased lidar measurements of the spectral dependence of the volume backscatter coefficient of an NLC. Such studies have been performed during a number of NLC events by e.g. the ALOMAR Rayleigh/Mie/Raman (RMR) lidar (von Cossart et al., GRL, 26, 1513, 1999). A drawback of these experiments is the wavelength limitation of the RMR lidar, the shortest wavelength of which is 355 nm. At this wavelength, the sensitivity of the lidar to particles with sizes smaller than, say, 25 nm is minimal. Because a considerable part of the entire particle population may have sizes below that threshold, a lingering question remains whether or not this drawback matters for typical NLC distributions. Using the ALOMAR ozone lidar, a measurement of the NLC volume backscatter coefficient at 308 nm becomes possible. Due to the l-4 -dependence of the backscatter coefficients, the latter are almost a factor of 2 larger at this wavelength than at 355 nm. For this reason and in order to gain a fourth wavelength to the spectral distribution, we aim at using the ozone lidar for the outlined project.

    Atmospheric processes Climate NLC Arctic Atmosphere lidar
    20. Simultaneous multi-instrumental measurements of temperatures, waves and PSCs in the polar winter atmosphere on both sides of the Scandinavian mountains

    Waves play a major role for the momentum and energy transport in the middle atmosphere [Fritts and van Zandt, 1993] by modifying the local temperature field as well as the general circulation when the waves reach the saturation level and break [Holton, 1983; Fritts, 1984]. The MACWAVE rocket campaign is investigating the wave field in polar latitudes during summer and winter. To learn more about the horizontal structure of the wave field, it is important to measure at more than one station. For the monitoring of the vertical transport by the waves, measurements over a large height range are necessary. The combination of lidars, radiosondes and falling spheres will cover the region from the ground up to approximately 105 km. When comparing data, it is important to take into account the different measurement principles and integration times. The rocket will show small scale variations whereas the lidar permits a continuous monitoring of the temperature and wave situation

    Atmospheric processes Ozone Geophysics Climate change Arctic Atmosphere