Norway: projects/activities

Directory entires that have specified Norway as the primary or lead country for the project/activity and are included in the AMAP, ENVINET, SAON and SEARCH directories. To see the full list of countries, see the countries list. The specified country may not be the geographic region where the activity is taking place - to select a geographic region, see the list of regions.

It is also possible to browse and query the full list of projects.

To edit or add records to any of the catalogs, log in or create an account.

Displaying: 1 - 20 of 130 Next
1. Synoptic meteorological observations, including radiosonde observations

Weather forecasting Main gaps: These observations are operational observations of METNO

Atmosphere
2. Norwegian greenhouse gas monitoring

Continuous measurements of greenhouse gases and particles to monitor changes in the atmosphere. The programme is operated by Norwegian Institute of Air Research (NILU) on behalf of Norwegian Environment Agency. The Zeppelin Observatory is a major contributor of data on a global as well as a regional scale.The programme is decribed in the link.

Aerosol Arctic haze Atmosphere CH4 chlorofluorocarbons (CFC) CO2 Halocarbons trace gases CO
3. European Monitoring and Evaluation Prgramme - EMEP

The main objective of EMEP is to provide governments with information of the deposition and concentration of air pollutants, as well as the quantity and significance of the long-range transmission of air pollutants and their fluxes across boundaries (UNECE, 2004a). The EMEP observations include measurements of species linked to acidification, eutrophication, photochemical oxidants, heavy metals, persistent organic pollutants, and particulate matter.

 

 

acidification eurtrophication ozone POPs heavy metals short lived climate forcers
4. Monitoring of long range transboundary air pollution, greenhouse gases, ozone layer and natural ultraviolet radiation

The main objective is to quantify the levels of air pollution in the artctic, and to document any changes in the exposures. It includes the necessary components to address impacts on ecosystems, human health, materials and climate change. 

AMAP Arctic air Arctic haze Atmosphere Atmospheric chemistry monitoring Atmospheric processes Carbon dioxide chlorofluorocarbons (CFC) Climate heavy metals methane Montreal & Kyoto Protocols PAHs PCBs POPs total gaseous mercury total ozone UV
5. Monitoring of broadband longwave and shortwave radiance at METNO Arctic stations

    These observations was originally funded through IPY projects (iAOOS-Norway and IPYTHORPEX), they are now maintained by the Norwegian Meteorological Institute. The observations at Bjørnøya started April 2008, Jan Mayen October 2008 and Hopen is scheduled 2009.

    Objectives are:

    1. Provision of algorithm tuning and validation data for EUMETSAT OSISAF radiative fluxes products (http://osisaf.met.no/).
    2. Provision of validation data for numerical weather prediction models.
    3. Generation of time series for use in time series analysis of atmospheric radiative conditions.
    4. Validation data for studying ocean and atmosphere heat exchange processes using bulk parameterisations.
    Atmosphere
    6. Monitoring of the atmospheric ozone layer and natural ultraviolet radiation

    - Provide continuous measurements of high scientific quality of total ozone and solar ultraviolet radiation, to be used in assessments related to health- and environmental issues. - Provide data that can be used for short term forecasting and assessments of long term changes of total ozone and UV radiation. - Provide information to the public and scientific communitee on the status and the development of the ozone layer and UV radiation - Provide information to the public on sun protection when episodes of high UV Index may occur.

    Atmosphere
    7. The Terrestrial Ecosystems Monitoring Programme (TOV)

    TOV is based on integrated monitoring where species and ecosystems are seen in context, providing better opportunities to interpret the results. TOV areas include seven monitoring sites in Boreal birch forest, all nature-protected areas. Lund in the south to Dividalen north is monitoring; lichen and algae on trees, ground vegetation, rodents, passerine birds, grouse, Gyrfalcon and Golden Eagle. There are also 10 Boreal spruce forest areas monitored, only for ground vegetation. The range of areas reflects both climate variability and differences in impacts from long-range pollutants throughout the country.

    Monitoring of flora and vegetation includes records of species and species composition of ground vegetation and mosses, lichens and fungi on tree trunks. Fauna monitoring includes population and reproduction monitoring for species which may indicate effects of long-range transboundary air pollution, and population monitoring of key species. In addition, a nationwide survey of selected variables, prevalence of lichen and algae on trees, as well as contaminants in wildlife species and eggs from birds of prey. Observed changes are considered in relation to the influence of anthropogenic factors.

    Ecosystems
    8. Radnett – a national network for monitoring radioactivity in the environment

    The Norwegian Radiation Protection Authority is responsible for a nationwide network of 33 stations that continuously measure background radiation levels. The network was established in the years following the Chernobyl accident in 1986, and was upgraded to a new and modern network in the period 2006-2008. Additional stations were added in 2009. The purpose of the monitoring network is to provide an early warning if radioactive emissions reach Norway.

    Arctic Atmosphere Long-range transport Monitoring Radionuclides
    9. UV-radiation in Norway

    The UV-monitoring network has provided 15 years of high quality, continuous measurements of solar UV radiation. The network is the hub of all activities related to UV forecasting and information to the public, aiming to reduce the high number of cases of acute and chronic negative health effects from excessive UV exposure.

    UV index UV radiation total ozone cloud optical depth erythemal UV doses
    10. Monitoring of fish and seafood

    Monitor the levels of radionuclides (137Cs and 210Po) in selected fish and seafood species in the Norwegian and Barents Sea.

    137Cs 99Tc and 210Po Environmental management Fish Human health Radioactivity Radionuclides shellfish
    11. Collaboration Network on EuroArctic Environmental Radiation Protection and Research (CEEPRA)

    The aim of the CEEPRA (Collaboration Network on EuroArctic Environmental Radiation Protection and Research) project is establishment of a cooperation network in the EuroArctic region, cross-border exchange of knowledge and skills, improvement of emergency preparedness capabilities and risk assessments in case of nuclear accidents in the region as well as raising awareness and knowledge in the general public and stakeholders with respect to the nature, common challenges and associated risks in the area of nuclear safety, emergency preparedness and radioactivity in the environment. The project will study the current state of radioactive contamination in terrestrial and marine ecosystems in the EuroArctic region by examining environmental samples collected from the Finnish Lapland, Finnmark and Troms in Norway, the Kola Peninsula and the Barents Sea. The results will provide updated information on the present levels, occurrence and fate of radioactive substances in the Arctic environments and food chains. Special attention will be given to collection and analyses of natural products widely used by population in Finland, Russia and Norway, such as berries, mushrooms, fish and reindeer meat. The region-specific risk assessments will be carried out through modelling and investigation of long-term effects of potential nuclear accidents in the EuroArctic region and possible impacts on the region’s indigenous population, terrestrial and marine environments, reindeer husbandry, the natural product sector, tourism and industries. Open seminars for general public and target groups will be arranged in Finland, Russia and Norway during the project implementation period to provide relevant information on radioactivity-related issues and the status in the region.

    Environmental safety terrestrial ecosystem Radioactivity Contaminant transport hypothetical assessments Radionuclides levels public awareness marine ecosystem fate of radionuclides in food chains modeling
    12. Air filter stations – a national network for monitoring radioactivity in the environment

    The Norwegian Radiation Protection Authority is responsible for a network of 5 air filter stations. These collect air samples through high density filters which are analyzed weekly by gamma spectroscopy. The network was established in the early 80s and is continuously updated. The purpose of the network is to assess the levels and composition of emissions from incidents and accidents. In addition, with the help of meteorological data, possible sources of release may be identified.

    Atmospheric processes Sources Radioactivity Radionuclides Atmosphere
    13. 129I in Arctic seawater

    Anthropogenic 129I discharged from European reprocessing plants has widely dispersed in the Nordic waters including the Arctic. Due to the high solubility and long residence time of iodine in seawater, anthropogenic 129I has become an ideal oceanographic tracer for investigating transport pathways and the exchange of water masses.

    129I Long-range transport Climate change Central Arctic Ocean Radionuclides Arctic Ocean currents
    14. Arctic and Alpine Stream Ecosystem Research

    The project, Arctic and Alpine Stream Ecosystem Research (AASER), started within EU’s Climate & Environment Programme and now continues with national funding, primarily Norway, Italy and Austria. The objective is to study dynamics and processes in rivers systems in Arctic and Alpine regions. Emphasis is given to the relationships between benthic invertebrates and environmental variables, especially in glacier-fed systems and in relation to climate change scenarios. On Svalbard research is concentrated around Ny Ålesund, particularly Bayelva and Londonelva. In 2004 the focus will be on the use to stable isotopes to detect transfer processes within and between ecosystems.

    Glaciers Biology Catchment studies Spatial trends Climate change Biodiversity Arctic Food webs Temporal trends Ecosystems
    15. MISA. Miljøgifter i svangerskap og ammeperioden

    Follow-up of mother-child cohort 515 childer and delivering women. Started 2006, will be followed due to AMAP protocol for 12 years

    PCBs Heavy metals Persistent organic pollutants (POPs) HHAG Human health
    16. Environmental Monitoring System for Svalbard and Jan Mayen

    • Collect and process data on elements impacting the environment and on the status of the environment and cultural remains • Interpret the data in order to assess trends and developments in the environment • Give advice to the authorities on needed actions, research or better monitoring. • SANDER, G., HANSSEN-BAUER, I., BJØRGE, A. & PRESTRUD, P.: Miljøovervåking av Svalbard og Jan Mayen - MOSJ. En dokumentasjon av systemet og den første vurderingen av miljøstatus. Tromsø 2005 • A number of trend reports available on http://mosj.npolar.no Member/connected to global network: Some of the indicators in the system is likely also reported to global networks. When operational: The programme was established in 1999. Some indicators have time series that extend further back than 1999, while some indicators are yet to be implemented in the monitoring system. Main gaps: The main weakness of MOSJ is the fact that not all identified indicators are actively monitored. All indicators have been as they are considered important to achieve the aims of the system, but some are not yet in action due to financial and practical constraints.

    Oceanography Atmosphere Human health Ecosystems
    17. Screening of potential new hazardous substances in Norway

    The aim of the programme is to obtain a snapshot of the occurrence of potentially hazardous substances in the environment, both in regions most likely to be polluted as well as in some very pristine environments. The focus is on little known , anthropogenic substances and their derivates, which are either used in high volumes or are likely to be persistent and hazardous to humans and other organisms. If substances being screened are found in significant amounts this may result in further investigations or monitoring on national level. The results from the screening can be used when analysing possible environmental effects of the selected substances, and to assess whether they pose a risk to the environment or not. The data are used as input to EU chemical eavluation processes and to the UN Stockholm convention. The screening results are valuable when data on chemicals are needed within the REACH-system in Europe. Locations: Varying, according to properties of the substances. Samples from both hot-spot and remote sites are included. Geographical coverage (countries): Norway, including Bear Island and Spitsbergen and Norwegian seas. The Nordic countries are cooperating on screening information exchange and studies, see net site and brochure: http://nordicscreening.org/ http://nordicscreening.org/index.php?module=Pagesetter&func=viewpub&tid=10&pid=1

    Atmosphere Human health
    18. Radioactivity in air

    To monitor radioactivity in the air

    Atmosphere
    19. Monitoring of oil and hazardous substances transport into and status in Norwegian coastal and oceanic waters

    1. Monitor transport of oil and hazardous substances from all sources into Norwegian coastal and oceanic waters through modelling, calculations and measurements. 2. Monitor contaminant status in selected indicators (biota, sediments, water, air, acidification). 3. Collect samples for the Norwegian Environmental Sample Bank. 4. Supply data for the Norwegian Integrated Management Plans The programme is operated by Norwegian Institute for Water Research (NIVA) on behalf of NPCA in cooperation with Norwegian Institute of Air Research (NILU), Norwegian Institute of Marine Research (IMR), The National Institute of Nutrition and Seafood Research (NIFES) and Norwegian Radiation Protection Authority (NRPA). - Locations: Norwegian marine waters (see attached map). Main gaps: New stations/indicators/parameters will be included when needed in the integrated management plans

    Atmosphere Ecosystems Oceanography
    20. Monitoring of commercial fish stocks in the Barents Sea

    This is a cooperation between Institute of Marine Research (IMR) in Norway (contact person Ingolf Røttingen, ingolf.rottingen@imr.no) and Polar Research Institute of Marine Fisheries and Oceanography (PINRO) in Russia. Main objective of the network: - Determine amount and distribution of commercial fish stocks - Describe abundance of biodiversity (benthos, fish, whale, zooplankton, phytoplankton, shellfish) - Determine annual variation in commercial fish biomass and feeding conditions for these fish species. Location: Southern and central Barents Sea – mainly in Norwegian sector. When operational: Area surveys are conducted throughout the year. The number of vessels in each survey differs, not only between surveys but may also change from year to year for the same survey. However, most surveys are conducted with only one vessel. It is not possible to measure all ecosystem components during each survey. Effort is always put on measuring as many species as possible on each survey, but available time put restrictions on what is possible to accomplish. Also, an investigation should not take too long time in order to give a synoptic picture of the conditions. Therefore the surveys must focus on a specific set of species. Other measured species may therefore not have optimal coverage and thereby increased uncertainty, but will still give important information. An overview of the measured species on each main survey is given in the table above. Operation: Observations are taken by IMR from research vessels. The programme is carried out in cooperation with Russia (PINRO) coordinated under the Joint Norway-Russia Fisheries Commission. Assessment of commercial stocks are conducted through ICES. Geographical coverage: Norwegian EEZ of Barents Sea including waters around Svalbard. The joint programme with Russia covers much of the Barents Sea (southern, central, and much of northern part in fall). Network type: Surveys, annual stock assessments

    Ecosystems